【题目】如图,在多面体
中,四边形
为矩形,
,
均为等边三角形,
,
.
![]()
(1)过
作截面与线段
交于点
,使得
平面
,试确定点
的位置,并予以证明;
(2)在(1)的条件下,求直线
与平面
所成角的正弦值.
【答案】(1)
为
的中点,证明见解析;(2)![]()
【解析】
(1)连结AC交BD于M,连结MN,证明
,根据线面平行判定定理即可得证;
(2)过F作
平面ABCD,垂足为O,过O作x轴
,作y轴
于P,则P为BC的中点,以O为原点,建立如图所示的空间直角坐标系,求出平面ABF的法向量,利用空间向量的数量积求解直线BN与平面ABF所成角的正弦值即可.
(1)当N为CF的中点时,
平面
,
证明:连结AC交BD于M,连结MN.
∵四边形ABCD是矩形,
∴M是AC的中点,
∵N是CF的中点,∴
,
又
平面BDN,
平面BDN,
∴
平面
.
![]()
(2)过F作
平面ABCD,垂足为O,过O作x轴
,作y轴
于P,则P为BC的中点,以O为原点,建立如图所示的空间直角坐标系,
设
,则
,
,
∵
,∴
,∴
,
∴
,
,
,
,
.
∴
,
,
,
设平面ABF的法向量为
,
则
,∴
,
令
,得
,
∴
,
∴直线BN与平面ABF所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
(
且
).
(I)求直线
的极坐标方程及曲线
的直角坐标方程;
(Ⅱ)已知
是直线
上的一点,
是曲线
上的一点,
,
,若
的最大值为2,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
![]()
(1)求证:AE⊥平面PCD;
(2)求PB和平面PAD所成的角的大小;
(3)求二面角A-PD-C的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,
平面
,
是正三角形,
与
的交点
恰好是
中点,又
,
.
![]()
(1)求证:
;
(2)设
为
的中点,点
在线段
上,若直线
平面
,求
的长;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为
的正方体
中,
为
的中点,
为
上任意一点,
,
为
上任意两点,且
的长为定值,则下面的四个值中不为定值的是( )
![]()
A. 点
到平面
的距离B. 三棱锥
的体积
C. 直线
与平面
所成的角D. 二面角
的大小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中
中,曲线
的参数方程为
(
为参数,
).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)设
是曲线
上的一个动点,若点
到直线
的距离的最大值为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂共有
名工人,已知这
名工人去年完成的产品数都在区间
(单位:万件)内,其中每年完成
万件及以上的工人为优秀员工,现将其分成
组,第
组、第
组、第
组、第
组、第
组对应的区间分别为
,
,
,
,
,并绘制出如图所示的频率分布直方图.
![]()
(1)求
的值,并求去年优秀员工人数;
(2)选取合适的抽样方法从这
名工人中抽取容量为
的样本,求这
组分别应抽取的人数;
(3)现从(2)中
人的样本中的优秀员工中随机选取
名传授经验,求选取的
名工人在同一组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com