精英家教网 > 高中数学 > 题目详情
已知a=sin(-
54π
7
),b=cos(-
19π
8
),c=tan(-
17π
5
),则a,b,c的大小关系是(  )
A、a>c>b
B、a>b>c
C、c>b>a
D、b>a>c
考点:正切函数的单调性
专题:三角函数的图像与性质
分析:根据三角函数的单调性分别判断a,b,c的范围进行判断即可得到结论.
解答: 解:∵sin(-
54π
7
)=sin(-
54π
7
+8π)=sin
7

cos(-
19π
8
)=cos(-
19π
8
+2π)=cos(-
8
)=cos
8
=sin(
π
2
-
8
)=sin
π
8

∴sin
7
>sin
π
8
>0,
即sin(-
54π
7
)>cos(-
19π
8
),
即a>b,
∵tan(-
17π
5
)=tan(-
17π
5
+4π)=tan
5
=-tan
5
<0,
∴c<0,
即c<b<a,
故选:B
点评:本题主要考查函数值的大小比较,根据三角函数的图象和性质结合函数的单调性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在2002年春季,一家著名的全国性连锁服装店进行了一项关于当年秋季服装流行色的民意调查,调查者通过向顾客发放饮料,并让顾客通过挑选饮料杯上印着的颜色来对自己喜欢的服装颜色“投票”根据这次调查结果,在某大城市A,服装颜色的众数是红色,而当年全国服装协会发布的是咖啡色
(1)这个结果是否代表A城市的人的想法?
(2)你认为这两种调查的差异是由什么引起的?

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学为了解高三女生的身高状况,随机抽取了100名女生.按身高分组得到频率分布表为:
 组号 分组 频数 频率
 A组[150,155) 5 0.050
 B组 
[155,160)
 m 0.350
 C组 
[160,165)
 30 n
 D组 
[165,170)
 x 0.200
 E组 
[170,175)
 10 0.100
(Ⅰ)求表中的m,n,x的值,并画出频率分布直方图;
(Ⅱ)由于该校要组成女子篮球队,决定在C、D、E组中用分层抽样方法抽取6人,求各组抽取的人数;
(Ⅲ)在(Ⅱ)中被抽取的6人中,随机抽取2名队员,求C组中选中人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足条件
y≥2|x|-1
y≤x+1
,则z=x+3y+1的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,tanA=
1
2
,tanB=
1
3
,且最长边的长度为1,求:
(1)∠C的大小;
(2)△ABC最短边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(α-β)=
1
3
,cosβ=
3
4
,(α-β)∈(0,
π
2
),β∈(0,
π
2
),则有(  )
A、α∈(0,
π
2
B、α∈(
π
2
,π)
C、α∈(0,π)
D、α=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

今年国庆节期间,上海世博会中国馆和美国馆异常火爆,10月1日中国馆内有2个广东旅游团和2个湖南旅游团,美国馆内有2个广东旅游团和3个湖南旅游团.现从中国馆中的4个旅游团选出其中一个旅游团,与从美国馆中的5个旅游团中选出的其中一个旅游团进行互换.
(1)求互换后中国馆恰有2个广东旅游团的概率;
(2)求互换后中国馆内广东旅游团数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=tan135°,b=cos(cos0°),c=(x2+
1
2
0,则a,b,c的大小关系是(  )
A、c>a>b
B、c>b>a
C、a>b>c
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)0.027-
1
3
-(-
1
7
)-2+256
3
4
-3-1+(
2
-1)0
(2)已知cos(
π
4
+x)=
3
5
17π
12
<x<
4
,求
sin2x+2sin2x
1-tanx
的值.

查看答案和解析>>

同步练习册答案