【题目】已知椭圆
(
)经过
与
两点.
![]()
(1)求椭圆
的方程;
(2)过原点的直线
与椭圆
交于
两点,椭圆
上一点
满足
,求证:
为定值.
【答案】(1)
;(2)见解析.
【解析】试题分析:
(1)由题意将点的坐标代入椭圆方程即可求得椭圆的方程为
;
(2)利用(1)中求得的椭圆方程结合题意分类讨论可证得
为定值2.
试题解析:
(1)将
与(
,
)两点代入椭圆C的方程,
得
解得
. ∴椭圆PM2的方程为
.
(2)由|MA|=|MB|,知M在线段AB的垂直平分线上,由椭圆的对称性知A、B关于原点对称.
①若点A、B是椭圆的短轴顶点,则点M是椭圆的一个长轴顶点,此时
=
.
同理,若点A、B是椭圆的长轴顶点,则点M在椭圆的一个短轴顶点,此时
=
.
②若点A、B、M不是椭圆的顶点,设直线l的方程为y=kx(k≠0),
则直线OM的方程为
,设A(x1,y1),B(x2,y2),
由
解得
,
,
∴
=
,同理
,
所以
=2×
+
=2,
故
=2为定值.
科目:高中数学 来源: 题型:
【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用
列联表,由计算可得
,参照下表:
| 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别无关”
B. 有99%以上的把握认为“爱好该项运动与性别有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下几个命题中:
①线性回归直线方程
恒过样本中心
;
②用相关指数
可以刻画回归的效果,值越小说明模型的拟合效果越好;
③随机误差是引起预报值
和真实值
之间存在误差的原因之一,其大小取决于随机误差的方差;
④在含有一个解释变量的线性模型中,相关指数
等于相关系数
的平方.
其中真命题为 _________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,正三角形PAC所在平面与等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中点,OH⊥PC于H.
![]()
(1)证明:PC⊥平面BOH;
(2)若
,求二面角A-BH-O的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某地区2000年至2016年环境基础设施投资额
(单位:亿元)的折线图.则下列结论中表述不正确的是( )
![]()
A. 从2000年至2016年,该地区环境基础设施投资额逐年增加;
B. 2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;
C. 2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;
D. 为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为
)建立了投资额y与时间变量t的线性回归模型
,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com