精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos(ωx+
π
6
)
(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈[0,
π
2
]
f(5α+
5
3
π)=-
6
5
f(5β-
5
6
π)=
16
17
,求cos(α+β)的值.
(1)由题意,函数f(x)=2cos(ωx+
π
6
)
(其中ω>0,x∈R)的最小正周期为10π
所以ω=
10π
=
1
5
,即ω=
1
5

所以f(x)=2cos(
1
5
x+
π
6
)

(2)因为α,β∈[0,
π
2
]
f(5α+
5
3
π)=-
6
5
f(5β-
5
6
π)=
16
17

分别代入得2cos(α+
π
2
)=-
6
5
?sinα=
3
5
2cosβ=
16
17
?cosβ=
8
17

α,β∈[0,
π
2
]

cosα=
4
5
,sinβ=
15
17

cos(α+β)=cosαcosβ-sinαsinβ=
4
5
×
8
17
-
3
5
×
15
17
=-
13
85
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案