精英家教网 > 高中数学 > 题目详情
13.(Ⅰ)求不等式-x2-2x+3<0的解集(用集合或区间表示)
(Ⅱ)求不等式|x-3|<1的解集(用集合或区间表示)

分析 (Ⅰ)根据一元二次不等式的解法步骤求解即可;
(Ⅱ)利用绝对值的定义化简不等式,求解即可.

解答 解:(Ⅰ)不等式-x2-2x+3<0可化为
x2+2x-3>0,…(2分)
即(x+3)(x-1)>0,…(4分)
解得或x<-3或x>1,
所以不等式的解集为{x|x<-3或x>1};…(6分)
(Ⅱ)不等式|x-3|<1可化为
-1<x-3<1,…(9分)
解得2<x<4,
所以不等式的解集为{x|2<x<4}.…(12分)

点评 本题考查了不等式的解法与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设数列{an}的前n项和为Sn,满足Sn=2an-2,则$\frac{a_8}{a_6}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线y=x+1的倾斜角为(  )
A.1B.-1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(1+$\sqrt{x}$)6(1$-\sqrt{x}$)6的展开式中x的系数为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了得到函数y=2sin($\frac{x}{3}$+$\frac{π}{6}$),x∈R的图象,只需要把函数y=2sinx,x∈R的图象上所有的点(  )
A.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的$\frac{1}{3}$倍(纵坐标不变)
B.向右平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的$\frac{1}{3}$倍(纵坐标不变)
C.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)
D.向右平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.阅读如图的程序框图,运行相应的程序,则输出a的值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)设f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}\right.$,求${∫}_{0}^{2}$f(x)dx的值;
(2)若复数z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,求|z1|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知M是曲线y=lnx+$\frac{1}{2}$x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均不小于$\frac{π}{4}$的锐角,则实数a的取值范围是(  )
A.(-∞,2]B.[2,+∞)C.(0,2]D.(-∞,2+$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知△DEF与△ABC分别是棱长为1与2的正三角形,AC∥DF,四边形BCDE为直角梯形,DE∥BC,BC⊥CD,点G为△ABC的重心,N为AB中点,AG⊥平面BCDE,M为线段AF上靠近点F的三等分点.
(Ⅰ)求证:GM∥平面DFN;
(Ⅱ)若二面角M-BC-D的余弦值为$\frac{{\sqrt{7}}}{4}$,试求异面直线MN与CD所成角的余弦值.

查看答案和解析>>

同步练习册答案