精英家教网 > 高中数学 > 题目详情
已知在四棱锥P-ABCD中,AD∥BC,AD⊥CD,PA=PD=AD=2BC=2CD,E,F分别是AD,PC的中点.
(Ⅰ)求证AD⊥平面PBE;
(Ⅱ)求证PA∥平面BEF;
(Ⅲ)若PB=AD,求二面角F-BE-C的大小.
考点:与二面角有关的立体几何综合题,直线与平面平行的判定,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)证明AD⊥平面PBE,只需证明BE⊥AD,PE⊥AD;
(Ⅱ)证明PA∥平面BEF,只需证明FG∥PA;
(Ⅲ)取CD中点H,连接FH,GH,可知∠FGH为二面角F-BE-C的平面角,即可求二面角F-BE-C的大小.
解答: (Ⅰ)证明:由已知得ED∥BC,ED=BC,
故BCDE是平行四边形,所以BE∥CD,BE=CD,
因为AD⊥CD,所以BE⊥AD,
由PA=PD及E是AD的中点,得PE⊥AD,
又因为BE∩PE=E,所以AD⊥平面PBE.
(Ⅱ)证明:连接AC交EB于G,再连接FG,
由E是AD的中点及BE∥CD,知G是BF的中点,

又F是PC的中点,故FG∥PA,
又因为FG?平面BEF,PA?平面BEF,
所以PA∥平面BEF.
(Ⅲ)解:设PA=PD=AD=2BC=2CD=2a,
PF=
3
a
,又PB=AD=2a,EB=CD=a,
故PB2=PE2+BE2即PE⊥BE,
又因为BE⊥AD,AD∩PE=E,
所以BE⊥平面PAD,得BE⊥PA,故BE⊥FG,
取CD中点H,连接FH,GH,可知GH∥AD,因此GH⊥BE,
综上可知∠FGH为二面角F-BE-C的平面角.
可知FG=
1
2
PA=a,FH=
1
2
PD=a,GH=
1
2
AD=a

故∠FGH=60°,所以二面角F-BE-C等于60°.
点评:本题考查线面垂直、线面平行,考查面面角,解题的关键是掌握线面垂直、线面平行的判定方法,正确找出面面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足
a
b
=0,|
a
|=1,|
b
|=2,则|
a
-
b
|=(  )
A、0
B、1
C、2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+x2+mx+1是R上的单调增函数,则实数m的取值范围是(  )
A、[
1
3
,+∞)
B、(-
1
3
,+∞)
C、(-∞,
1
3
]
D、(-∞,
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b是互不相等的正数,则下列不等式中恒成立的个数是(  )
①(a+3)2>2a2+6a+11
a+3
-
a+1
a+2
-
a

③a2+
1
a2
≥a+
1
a
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面是边长2的正三角形,侧棱与底面垂直,且长为
3
,D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求点A到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的前n项和为Tn,且{an}、{bn}满足条件:S4=4a3-2,Tn=2bn-2.
(1)求公差d的值;
(2)若对任意的n∈∈N*,都有Sn≥S5成立,求a1的取直范围;
(3)若a1=1,令cn=anbn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵A=
.
53
-20
.
,若存在一矩阵P=
.
-13
1-2
.
使得A=PBP-1.试求:
(Ⅰ)矩阵B; 
(Ⅱ)B3

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项,若bn=log2an+1
(1)求数列{bn}的通项公式;
(2)若数列{cn}满足cn=an+1+
1
b2n-1•b2n+1
,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

巳知函数f(x)=x2-2ax-2alnx,g(x)=ln2x+2a2,其中x>0,a∈R.
(Ⅰ)若x=1是函数f(x)的极值点,求a的值;
(Ⅱ)若f(x)在区间(2,+∞)上单调递增,求a的取值范围;
(Ⅲ)记F(x)=f(x)+g(x),求证:F(x)≥
1
2

查看答案和解析>>

同步练习册答案