精英家教网 > 高中数学 > 题目详情
9.已知直角坐标系中,曲线C参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=2-2sinα}\end{array}\right.$(0≤α≤2π),现以直角坐标系的原点为极点,以x轴正半轴为极轴,建立极坐标系,则曲线C的极坐标方程是ρ=4sinθ.

分析 求出C的直角坐标系方程,然后根据极坐标方程进行转化即可.

解答 解:,曲线C的标准方程为x2+(y-2)2=4,
即x2+y2-4y+4=4,
则x2+y2-4y=0,
则ρ2-4ρsinθ=0
即ρ=4sinθ,
故答案为:ρ=4sinθ

点评 本题主要考查参数方程,极坐标方程和普通方程之间的转化,根据相应的转化公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若不等式sin2x-asinx+2≥0对任意的x∈(0,$\frac{π}{2}$]恒成立,则实数a的最大值是(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)为奇函数,且当x>0时,f(x)=10x,则当x≤0,f(x)=$\left\{\begin{array}{l}{0,x=0}\\{-1{0}^{-x},x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.
(Ⅰ)若CE∥面BDF,求PE:ED的值;
(Ⅱ)求二面角B-DF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{2a{x}^{2}+bx+1}{{e}^{x}}$(e为自然对数的底数).
(1)若a=$\frac{1}{2}$,求函数f(x)的单调区间;
(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某空间几何体的三视图如图所示,则此几何体的体积是(  )
A.$\frac{4}{3}$B.$\frac{{4\sqrt{2}}}{3}$C.$\frac{8}{3}$D.$\frac{{8\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知△ABC,CD为∠ACB的角平分线,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为θ,则(  )
A.∠A′DB≤θ,∠A′CB≤θB.∠A′DB≤θ,∠A′CB≥θC.∠A′DB≥θ,∠A′CB≤θD.∠A′DB≥θ,∠A′CB≥θ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)与f′(5)分别为(  )
A.3,3B.3,-1C.-1,3D.-1,-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了研究新招工人对某产品的熟练掌握程度,从某车间中随机抽取了5名工人,其上机天数x和每天生产产品的个数y如表所示:
上机天数x1020304050
产品个数y/天62 758189
根据上表提供的数据,求得y关于x的线性回归方程为$\widehat{y}$=0.67x+54.9,由于表中有一个数据模糊不清,请你推断出该数据的值为(  )
A.67B.68C.68.3D.71

查看答案和解析>>

同步练习册答案