精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=|xex|,且方程f2(x)+2af(x)+1=0(a∈R)有四个实数根,则a的取值范围为(  )
A.(-∞,-$\frac{{e}^{2}+1}{2e}$)B.(-$\frac{{e}^{2}+1}{e}$,-2)C.(-2,0)D.($\frac{{e}^{2}+1}{2e},+∞$)

分析 函数f(x)=|xex|化成分段函数,通过求导分析得到函数f(x)在(0,+∞)上为增函数,在(-∞,-1)上为增函数,在(-1,0)上为减函数,求得函数f(x)在(-∞,0)上,当x=-1时有一个最大值$\frac{1}{e}$,所以,要使方程f2(x)+2af(x)+1=0(a∈R)有四个实数根,f(x)的值一个要在(0,$\frac{1}{e}$)内,一个在($\frac{1}{e}$,+∞)内,然后运用二次函数的图象及二次方程根的关系列式求解t的取值范围.

解答 解:f(x)=|xex|=$\left\{\begin{array}{l}{x{e}^{x},x≥0}\\{-x{e}^{x},x<0}\end{array}\right.$,
当x≥0时,f′(x)=ex+xex≥0恒成立,所以f(x)在[0,+∞)上为增函数;
当x<0时,f′(x)=-ex-xex=-ex(x+1),
由f′(x)=0,得x=-1,当x∈(-∞,-1)时,f′(x)=-ex(x+1)>0,f(x)为增函数,
当x∈(-1,0)时,f′(x)=-ex(x+1)<0,f(x)为减函数,
所以函数f(x)=|xex|在(-∞,0)上有一个最大值为f(-1)=-(-1)e-1=$\frac{1}{e}$,
要使方程f2(x)+2af(x)+1=0(a∈R)有四个实数根,
令f(x)=m,则方程m2+2am+1=0应有两个不等根,且一个根在(0,$\frac{1}{e}$)内,一个根在( $\frac{1}{e}$,+∞)内,
再令g(m)=m2+2am+1,因为g(0)=1>0,
则只需g( $\frac{1}{e}$)<0,即($\frac{1}{e}$)2+$\frac{1}{e}$•2a+1<0,
解得:a<-$\frac{{e}^{2}+1}{2e}$.
所以,使得函数f(x)=|xex|,方程f2(x)+2af(x)+1=0(a∈R)有四个实数根的t的取值范围是(-∞,-$\frac{{e}^{2}+1}{2e}$).
故选:A.

点评 本题考查导数知识的运用,考查分段函数,考查学生分析解决问题的能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知梯形ABCD的各顶点依次在半径为1的圆上,下底AB是直径,$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,其中λ,μ∈R,则λ+μ的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=ax-k-1(a>0,a≠1)过定点(2,0),且f(x)在定义域R上是减函数,则g(x)=loga(x+k)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z=x+2i(x∈R,i为虚数单位),z2=-3+4i,则x=(  )
A.±1B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足3an+1+an=4(n≥1),且a1=9.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn,并求满足不等式|Sn-n-6|$<\frac{1}{125}$的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=$\frac{1+i}{2-i}$(其中i是虚数单位),则复数z在坐标平面对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等比数列{an}中,a1=2,a3=8,则S4=(  )
A.30或-10B.30C.-10D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.正方体ABCD-A1B1C1D1中,E、F、M、N分别是AB,CC1、AA1、C1D1的中点,求证:平面CEM∥平面BFN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$的值.

查看答案和解析>>

同步练习册答案