精英家教网 > 高中数学 > 题目详情
6.正方体ABCD-A1B1C1D1中,E、F、M、N分别是AB,CC1、AA1、C1D1的中点,求证:平面CEM∥平面BFN.

分析 设正方体ABCD-A1B1C1D1的棱长为2,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能证明平面CEM∥平面BFN.

解答 证明:设正方体ABCD-A1B1C1D1的棱长为2,
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
由已知得C(0,2,0),E(2,1,0),M(2,0,1),
B(2,2,0),F(0,2,1),N(0,1,2),
$\overrightarrow{CE}$=(2,-1,0),$\overrightarrow{CM}$=(2,-2,1),$\overrightarrow{FB}$=(2,0,-1),$\overrightarrow{FN}$=(0,-1,1),
设平面CEM的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=2x-y=0}\\{\overrightarrow{n}•\overrightarrow{CM}=2x-2y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,2,2),
设平面BFN的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{FB}=2a-c=0}\\{\overrightarrow{m}•\overrightarrow{FN}=-b+c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,2,2),
∵$\overrightarrow{m}=\overrightarrow{n}$,∴平面CEM∥平面BFN.

点评 本题考查平面与平面平行的证明,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设a,b,c均为正实数.
(1)若a+b+c=1,求证:a2+b2+c2≥$\frac{1}{3}$;
(2)求证:$\sqrt{\frac{{a}^{2}+{b}^{2}+{c}^{2}}{3}}$≥$\frac{a+b+c}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=|xex|,且方程f2(x)+2af(x)+1=0(a∈R)有四个实数根,则a的取值范围为(  )
A.(-∞,-$\frac{{e}^{2}+1}{2e}$)B.(-$\frac{{e}^{2}+1}{e}$,-2)C.(-2,0)D.($\frac{{e}^{2}+1}{2e},+∞$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题P“双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上任意一点Q到直线l1:bx+ay=0,l2:bx-ay=0的距离分别记作d1,d2则d1,d2为定值”是真命题
(1)求出d1•d2的值
(2)已知直线l1,l2关于y轴对称且使得椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上任意点到l1,l2的距离d1,d2满足${{d}_{1}}^{2}+{{d}_{2}}^{2}$为定值,求l1,l2的方程
(3)已知直线m与(2)中某一条直线平行(或重合)且与椭圆C交于M,N两点,求|OM|+|ON|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$表示的平面区域的面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:$\underset{lim}{n→∞}$[$\frac{1}{1×6}$+$\frac{1}{6×11}$+$\frac{1}{11×16}$+…+$\frac{1}{(5n-4)(5n+1)}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+t}\\{y=1+t}\end{array}\right.$(t为参数).曲线C2的极坐标方程化为 ρ=2cosθ+6sinθ.
(I)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标化为直角坐标方程;
(Ⅱ)曲线C1,C2是否相交,若相交,请求出弦长,若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{\frac{1-{2}^{x}}{1+{2}^{x}}}$.
(1)求f(x)的定义域;
(2)判断f(x)在定义域内的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解下列不等式:
(1)-x2+x+6≤0
(2)x2-2x-5<2x.

查看答案和解析>>

同步练习册答案