精英家教网 > 高中数学 > 题目详情

【题目】近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量X: ①求对商品和服务全好评的次数X的分布列(概率用组合数算式表示);
②求X的数学期望和方差.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中n=a+b+c+d)

【答案】
(1)解:由题意可得关于商品和服务评价的2×2列联表为:

对服务好评

对服务不满意

合计

对商品好评

80

40

120

对商品不满意

70

10

80

合计

150

50

200

计算观测值

对照数表知,在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关;


(2)解:每次购物时,对商品和服务都好评的概率为 ,且X的取值可以是0,1,2,3,4,5;

其中

所以X的分布列为:

X

0

1

2

3

4

5

P

由于X~B(5, ),


【解析】(1)由题意列出2×2列联表,计算观测值K2 , 对照数表即可得出正确的结论;(2)根据题意,得出商品和服务都好评的概率,求出X的可能取值,计算对应的概率值,写出期望与方差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过 x 的部分按平价收费,超出 x 的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了 100 位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中 a 的值;
(Ⅱ)若该市政府希望使 85%的居民每月的用水量不超过标准 x(吨),估计 x 的值,并说明理由;
(Ⅲ)已知平价收费标准为 4 元/吨,议价收费标准为 8元/吨.当 x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1 , F2 , 且|F1F2|=2,点(1, )在椭圆C上.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为 ,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,E、F分别是棱AD、DD1的中点,若AB=4,则过点B,E,F的平面截该正方体所得的截面面积S等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+m|+|2x﹣1|(m∈R) (I)当m=﹣1时,求不等式f(x)≤2的解集;
(II)设关于x的不等式f(x)≤|2x+1|的解集为A,且[ ,2]A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+m|x+a|. (Ⅰ)当m=a=﹣1时,求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤﹣3或a≥3},求实数m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn是等比数列{an}的前n项和,S3 , S9 , S6成等差数列. (Ⅰ)求证:a2 , a8 , a5成等差数列;
(Ⅱ)若等差数列{bn}满足b1=a2=1,b3=a5 , 求数列{an3bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形 为菱形,四边形 为平行四边形,设 相交于点

(1)证明:平面 平面
(2)若 ,求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆E:x2+(y﹣ 2= 经过椭圆C: + =1(a>b>0)的左右焦点F1 , F2 , 且与椭圆C在第一象限的交点为A,且F1 , E,A三点共线,直线l交椭圆C于M,N两点,且 (λ≠0)
(1)求椭圆C的方程;
(2)当三角形AMN的面积取得最大值时,求直线l的方程.

查看答案和解析>>

同步练习册答案