(本小题满分14分)已知圆C的圆心在坐标原点O,且与直线
相切.
(1)求直线
被圆C所截得的弦AB的长;
(2)若与直线
垂直的直线与圆C交于不同的两点P,Q,且以PQ为直径的圆过原点,求直线的纵截距;
(3)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程.
(1)
;(2)2或-2;(3)![]()
【解析】
试题分析:(1)已知得圆的半径为圆心到直线的距离,求得半径r=2,所以圆
的标准方程为:
;通过半弦长与半径、弦心距的关系求得弦AB长为
;(2)由已知可设直线
的方程为:
,联立圆的方程化简得
,
得
,由根与系数的关系得
,又
,所以
,变形化简得
满足
,解得b=2或-2;(3)由题意知点M、N在以
点为圆心,线段
长为半径的圆G上,而
,所以
,圆G的方程为
,与圆C的方程相减得公共弦MN的方程
;
试题解析:(1)由题意得:圆心
到直线
的距离为圆的半径,
,所以圆
的标准方程为:
所以圆心到直线
的距离
(2)设直线的方程为:![]()
联立
得:
,
设直线与圆的交点
,
由
,得
,
(3)
因为
,所以
,即满足
,
又
,
所以
(4)
由(3)(4)得
,满足
,即
(3)因为点
,所以
,![]()
所以以
点为圆心,线段
长为半径的圆
方程:
(1)
又圆
方程为:
(2),由
得直线
方程:![]()
考点:直线与圆的位置关系与向量的数量积运算的应用
科目:高中数学 来源:2014-2015学年四川省高二上学期10月月考文科数学卷(解析版) 题型:解答题
(本小题满分12分)三角形的三个顶点是
,
,
.
(1)求AB边的中线所在直线
的方程;
(2)求BC边的高所在直线
的方程;
(3)求直线
与直线
的交点坐标.
查看答案和解析>>
科目:高中数学 来源:2014-2015学年四川省高二上学期10月月考文科数学卷(解析版) 题型:选择题
已知函数
是周期为2的偶函数,且在
[0,1]时,
,若直线
与函数
的图象有且仅有三个公共点,则k的取值范围是( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com