【题目】如图,曲线
由曲线
和曲线
组成,其中点
为曲线
所在圆锥曲线的焦点,点
为曲线
所在圆锥曲线的焦点.
![]()
(Ⅰ)若
,求曲线
的方程;
(Ⅱ)如图,作直线
平行于曲线
的渐近线,交曲线于点
,求证:弦
的中点
必在曲线
的另一条渐进线上;
(Ⅲ)对于(Ⅰ)中的曲线
,若直线
过点
交曲线
于点
,求
与
面积之和的最大值.
【答案】(Ⅰ)
和
;(Ⅱ)证明见解析;(Ⅲ)
.
【解析】
试题分析:(1)由已知条件布列关于
的方程组,即可得到曲线
的方程;(2)设直线
代入
,得到
,从而可得
,所以弦
的中点
必在曲线
的另一条渐进线上;(3)由题意可知:
和
面积之和等于
面积的两倍,利用设而不求法表示
,整体换元结合均值不等式即可求得面积的最大值.
试题解析:
(Ⅰ)
,
则曲线的方程为
和![]()
(Ⅱ)曲线
的渐近线为
,如图,设直线
,
则
,
设点
,则
,
,
,即点
在直线
上.
(Ⅲ)因为
的中点为原点
,所以
和
面积之和等于
面积的两倍,由(Ⅰ)知,曲线
,点
,
设直线
的方程为
,
,
设
由韦达定理:
,
所以
,
到直线
距离
,
,
令
,
,
,当且仅当
即
时等号成立,
所以
时,![]()
与
面积之和的最大值为![]()
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中(底面△ABC为正三角形),A1A⊥平面ABC,AB=AC=2,
,D是BC边的中点.
![]()
(1)证明:平面ADB1⊥平面BB1C1C.
(2)求点B到平面ADB1的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·郑州模拟)某市公安局为加强安保工作,特举行安保项目的选拔比赛活动,其中A、B两个代表队进行对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式进行三场比赛,每场胜队得1分,负队得0分,设A队、B队最后所得总分分别为ξ,η,且ξ+η=3.
对阵队员 | A队队员胜 | A队队员负 |
A1对B1 |
|
|
A2对B2 |
|
|
A3对B3 |
|
|
(1)求A队最后所得总分为1的概率;
(2)求ξ的分布列,并用统计学的知识说明哪个队实力较强.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行促销活动,有两个摸奖箱,
箱内有一个“
”号球、两个“
”号球、三个“
”号球、四个无号球,
箱内有五个“
”号球、五个“
”号球,每次摸奖后放回,消费额满
元有一次
箱内摸奖机会,消费额满
元有一次
箱内摸奖机会,摸得有数字的球则中奖,“
”号球奖
元、“
”号球奖
元、“
”号球奖
元,摸得无号球则没有奖金.
(Ⅰ)经统计,消费额
服从正态分布
,某天有
为顾客,请估计消费额
(单位:元)在区间
内并中奖的人数;
(Ⅱ)某三位顾客各有一次
箱内摸奖机会,求其中中奖人数
的分布列;
(Ⅲ)某顾客消费额为
元,有两种摸奖方法,方法一:三次
箱内摸奖机会;方法二:一次
箱内摸奖机会,请问:这位顾客选哪一种方法所得奖金的期望值较大.
附:若
,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
经过点
,其倾斜角为
,在以原点
为极点,
轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线
的极坐标方程为![]()
(Ⅰ)若直线
与曲线
有公共点,求
的取值范围;
(Ⅱ)设
为曲线
上任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
两县城A和B相聚20km,现计划在两县城外以AB为直径的半圆弧
上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在
的中点时,对称A和城B的总影响度为0.0065.(1)将y表示成x的函数;(11)讨论(1)中函数的单调性,并判断弧
上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知倾斜角为
的直线
经过点
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为![]()
(1)写出曲线
的普通方程;
(2)若直线
与曲线
有两个不同的交点
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com