分析 (1)把不等式-4<-$\frac{1}{2}$x2-x-$\frac{3}{2}$<-2化为等价的不等式组,求出解集即可;
(2)讨论a>0时,不等式ax2-(a+1)x+1<0解集的情况,求出对应的解集即可.
解答 解:(1)不等式-4<-$\frac{1}{2}$x2-x-$\frac{3}{2}$<-2可化为
$\left\{\begin{array}{l}{-{\frac{1}{2}x}^{2}-x-\frac{3}{2}>-4①}\\{-{\frac{1}{2}x}^{2}-x-\frac{3}{2}<-2②}\end{array}\right.$,
解①得,-1-$\sqrt{6}$<x<-1+$\sqrt{6}$;
解②得,x<-1-$\sqrt{2}$或x>-1+$\sqrt{2}$;
∴这个不等式的解集为
{x|-1-$\sqrt{6}$<x<-1-$\sqrt{2}$,或-1+$\sqrt{2}$<x<-1+$\sqrt{6}$};
(2)a>0时,不等式ax2-(a+1)x+1<0可化为(x-$\frac{1}{a}$)(x-1)<0;
∴①当a>1时,$\frac{1}{a}$<1,原不等式的解集为{x|$\frac{1}{a}$<x<1};
②当0<a<1时,$\frac{1}{a}$>1,原不等式的解集为{x|1<x<$\frac{1}{a}$};
③当a=1时,$\frac{1}{a}$=1,原不等式化为(x-1)2<0,其解集为∅.
点评 本题考查了一元二次不等式的解法与应用问题,也考查了分类讨论思想的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1≤a<2 | B. | 2<a≤$\frac{7}{3}$ | C. | 2≤a<$\frac{7}{3}$ | D. | 1<a≤2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com