【题目】已知关于
的方程
,根据下列条件,分别求出
的值.
(1)方程两实根的积为5;
(2)方程的两实根
满足
.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , an>0,且满足:(an+2)2=4Sn+4n+1,n∈N* .
(1)求a1及通项公式an;
(2)若bn=(﹣1)nan , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图,曲线
由上半椭圆
和部分抛物线
连接而成,
的公共点为
,其中
的离心率为
.
![]()
(Ⅰ)求
的值;
(Ⅱ)过点
的直线
与
分别交于
(均异于点
),若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点
分别是Δ
的边
的中点,连接
.现将
沿
折叠至Δ
的位置,连接
.记平面
与平面
的交线为
,二面角
大小为
.
![]()
![]()
(1)证明: ![]()
(2)证明: ![]()
(3)求平面
与平面
所成锐二面角大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四边形AMNC为等腰梯形,△ABC为直角三角形,平面AMNC与平面ABC垂直,AB=BC,AM=CN,点O、D、E分别是AC、MN、AB的中点.过点E作平行于平面AMNC的截面分别交BD、BC于点F、G,H是FG的中点.
(Ⅰ)证明:OB⊥EH;
(Ⅱ)若直线BH与平面EFG所成的角的正弦值为
,求二面角D﹣AC﹣H的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】类似于十进制中的逢10进1,十二进制的进位原则是逢12进1,采用数字0,1,2,…,9和字母M,N作为计数符号,这些符号与十进制的数字对应关系如下表:
十二进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | M | N |
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
例如,因为563=3×122+10×12+11,所以十进制中的563在十二进制中被表示为3MN(12).那么十进制中的2008在十二进制中被表示为( )
A. 11N4(12) B. 1N25(12) C. 12N4(12) D. 1N24(12)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com