精英家教网 > 高中数学 > 题目详情

【题目】已知坐标平面上点与两个定点 的距离之比等于5.

(1)求点的轨迹方程,并说明轨迹是什么图形;

2)记(1)中的轨迹为,过点的直线所截得的线段的长为 8,求直线的方程.

【答案】12,或

【解析】 试题分析】(1)运用两点间距离公式建立方程进行化简;(2)借助直线与圆的位置关系,运用圆心距、半径、弦长之间的关系建立方程待定直线的斜率,再用直线的点斜式方程分析求解:

(1)由题意,得

化简,得

的轨迹方程是

轨迹是以为圆心,以为半径的圆

(2)当直线的斜率不存在时,

此时所截得的线段的长为

符合题意.

当直线的斜率存在时,设的方程为

,即

圆心到的距离

由题意,得

解得

∴直线的方程为

.

综上,直线的方程为

,或.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】奇函数f(x)、偶函数g(x)的图象分别如图1、2所示,方程f(g(x))=0、g(f(x))=0的实根个数分别为a、b,则a+b=(

A.14
B.10
C.7
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,设动点满足.

1)求动点的轨迹的方程;

2)若直线与曲线相交于 两个不同点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)为选拔选手参加中国汉字听写大会,某中学举行了一次汉字听写大赛活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

1)求样本容量和频率分布直方图中的的值;

2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加中国汉字听写大会,求所抽取的2名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中, 平面 平面 ,又

1)求 与平面所成角的正弦值;

2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高级中学共有学生2000名,各年级男、女生人数如表:

已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.

(1)求的值;

(2)现用分层抽样的方法在全校抽取48名学生,问应该在高三年级抽取多少名?

(3)已知,求高三年级中女生比男生多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从抛物线y2=32x上各点向x轴作垂线,其垂线段中点的轨迹为E.

(1)求轨迹E的方程;

(2)已知直线ly=kx-2)(k>0)与轨迹E交于A,B两点,且点F(2,0),若|AF|=2|BF|,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|a﹣1≤x≤2a+3},B={x|﹣2≤x≤4},全集U=R
(1)当a=2时,求A∪B和(RA)∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,EF分别是CD的中点,(1)证明: ;(2)求异面直线所成的角;(3)证明:平面平面

查看答案和解析>>

同步练习册答案