【题目】已知抛物线
,抛物线
与圆
的相交弦长为4.
(1)求抛物线
的标准方程;
(2)点
为抛物线
的焦点,
为抛物线
上两点,
,若
的面积为
,且直线
的斜率存在,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,与
轴交于点
,
,过
轴上一点
引
轴的垂线,交椭圆
于点
,
,当
与椭圆右焦点重合时,
.
(1)求椭圆
的方程;
(2)设直线
与直线
交于点
,是否存在定点
和
,使
为定值.若存在,求
、
点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新高考改革中,打破了文理分科的“
”模式,不少省份采用了“
”,“
”,“
”等模式.其中“
”模式的操作又更受欢迎,即语数外三门为必考科目,然后在物理和历史中选考一门,最后从剩余的四门中选考两门.某校为了了解学生的选科情况,从高二年级的2000名学生(其中男生1100人,女生900人)中,采用分层抽样的方法从中抽取n名学生进行调查.
(1)已知抽取的n名学生中含男生110人,求n的值及抽取到的女生人数;
(2)在(1)的情况下对抽取到的n名同学“选物理”和“选历史”进行问卷调查,得到下列2×2列联表.请将列联表补充完整,并判断是否有99%的把握认为选科目与性别有关?
选物理 | 选历史 | 合计 | |
男生 | 90 | ||
女生 | 30 | ||
合计 |
(3)在(2)的条件下,从抽取的“选历史”的学生中按性别分层抽样再抽取5名,再从这5名学生中抽取2人了解选政治、地理、化学、生物的情况,求2人至少有1名男生的概率.
参考公式:
.
| 0.10 | 0.010 | 0.001 |
| 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
在区间
上,
,
,
,
,
,
均可为一个三角形的三边长,则称函数
为“三角形函数”.已知函数
在区间
上是“三角形函数”,则实数
的取值范围为( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方形ABCD,E,F分别为AB,CD的中点,将△ADE沿DE折起,使△ACD为等边三角形,如图所示,记二面角A-DE-C的大小为
.
![]()
(1)证明:点A在平面BCDE内的射影G在直线EF上;
(2)求角
的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)
与g(x)=3elnx+mx的图象有4个不同的交点,则实数m的取值范围是( )
A.(﹣3,
)B.(﹣1,
)C.(﹣1,3)D.(0,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx+2x﹣1.
(1)求f(x)的极值;
(2)若对任意的x>1,都有f(x)﹣k(x﹣1)>0(k∈Z)恒成立,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为
(t为参数),直线l与曲线C:(y﹣1)2﹣x2=1交于A,B两点.
(1)求|AB|的长;
(2)在以O为极点,x轴的正半轴为极轴建立的极坐标系中,设点P的极坐标为
,求点P到线段AB中点M的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com