【题目】在直角坐标系中,以原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
,过点
的直线
(
为参数)与曲线
相交于点
,
两点.
(1)求曲线
的平面直角坐标系方程和直线
的普通方程;
(2)求
的值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,
,
分别是椭圆短轴的上下两个端点,
是椭圆的左焦点,P是椭圆上异于点
,
的点,若
的边长为4的等边三角形.
写出椭圆的标准方程;
当直线
的一个方向向量是
时,求以
为直径的圆的标准方程;
设点R满足:
,
,求证:
与
的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)
(1)根据以上数据完成下列
的列联表;
(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析.
主食蔬菜 | 主食肉类 | 合计 |
| |
50岁以下 | ||||
50岁以上 | ||||
合计 | ||||
参考公式:![]()
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高三年级不同性别的学生对取消艺术课的态度(支持或反对),进行了如下的调查研究,全年级共有1350人,男女生比例为
,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为
,通过对被抽取学生的问卷调查,得到如下
列联表:
支持 | 反对 | 总计 | |
男生 | 30 | ||
女生 | 25 | ||
总计 |
(1)完成列联表,并判断能否有
的把握认为态度与性别有关?
(2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式及临界值表:![]()
| 0.10 | 0.050 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已如长方形
中,
,M为
的中点,将
沿
折起,使得平面
平面
,
![]()
(1)求证:
;
(2)若点
是线段
上的中点,求三棱锥
与四棱锥
的体积的比值 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
.
(1)若曲线
在点
处的切线方程为
,求函数
的解析式;
(2)讨论函数
的单调性;
(3)若对于任意的
,不等式
在
上恒成立,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com