【题目】已知函数
,其中
.
(1)若曲线
在点
处的切线方程为
,求函数
的解析式;
(2)讨论函数
的单调性;
(3)若对于任意的
,不等式
在
上恒成立,求
的取值范围.
【答案】(1)函数
的解析式为
;(2)当
时,
在
,
内是增函数;当
时
在
,
内是增函数,在
,
内是减函数;(3)
.
【解析】试题(1)先求出导函数
,进而根据曲线
在点
处的切线方程为
得到
即
,从中可求解出
的值,进而可确定函数
的解析式;(2)针对导函数,对
分
、
两类,由导数大于零求出函数的单调增区间,由导数小于零可求出函数的单调递减区间;(3)要使对于任意的
,不等式
在
上恒成立,只须
,由(2)的讨论,确定函数
,进而得到不等式
即
,该不等式组对任意的
成立,从中可求得
.
(1)
,由导数的几何意义得
,于是![]()
由切点
在直线
上可得
,解得![]()
所以函数
的解析式为
3分
(2)因为![]()
当
时,显然
,这时
在
,
内是增函数
当
时,令
,解得![]()
当
变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ↗ | 极大值 | ↘ | ↘ | 极小值 | ↗ |
所以
在
,
内是增函数,在
,
内是减函数.......7分
(3)由(2)知,
在
上的最大值为
与
中的较大者,对于任意的
,不等式
在
上恒成立,当且仅当
即
对任意的
成立,从而得
,所以满足条件的
的取值范围是
..................13分.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
,过点
的直线
(
为参数)与曲线
相交于点
,
两点.
(1)求曲线
的平面直角坐标系方程和直线
的普通方程;
(2)求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第
代“勾股树”所有正方形的个数与面积的和分别为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为
,若满足
,则称函数
为“
型函数”.
(1)判断函数
和
是否为“
型函数”,并说明理由;
(2)设函数
,记
为函数
的导函数.
①若函数
的最小值为1,求
的值;
②若函数
为“
型函数”,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩
服从正态分布
,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:
![]()
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有
的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?
(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为
,求
的数学期望.
附:若随机变量
服从正态分布
,则
,![]()
,
.
参考公式与临界值表:
,其中
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四面体
的棱长满足
,
,现将四面体
放入一个主视图为等边三角形的圆锥中,使得四面体
可以在圆锥中任意转动,则圆锥侧面积的最小值为___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com