【题目】己知函数
,其中
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)设
,
,若存在
,对任意的实数
,恒有
成立,求
的最大值.
【答案】(Ⅰ)见解析;(Ⅱ)![]()
【解析】
(Ⅰ)求导后讨论
的正负号,即可说明导函数的正负号,即可说明单调性。
(Ⅱ)题干等价于存在
,对任意的实数
,恒有
,记
即讨论
的取值,判断
在
的单调性,求出其最小值使
成立。
解:(Ⅰ)由题,![]()
(1)当
时,
恒成立,
故此时函数
在
上单调递增;
(2)当
时,函数在
上单调递增,在
上单调递减,
(Ⅱ)不等式![]()
![]()
记
,
,
则
,
其中![]()
由(Ⅰ)可知函数
在
上单调递增,在
上单调递减,
(1)若
,则
,
,
函数
在区间
上单调递增,
,
![]()
(2)若
即
时,
,
函数
在区间
上单调递减,
,
;
(3)当
时,此时
且
在
内递减,
在区间
内有唯一零点,记为
,
函数
在区间
上单调递减,在区间
上单调递增
从而
,其中![]()
,
令
,
,则![]()
所以
,
综上,当
时,
取到最大值为
.
科目:高中数学 来源: 题型:
【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)
(1)根据以上数据完成下列
的列联表;
(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析.
主食蔬菜 | 主食肉类 | 合计 |
| |
50岁以下 | ||||
50岁以上 | ||||
合计 | ||||
参考公式:![]()
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
上有一动点
,过点
作直线
垂直于
轴,动点
在
上,且满足
(
为坐标原点),记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知定点
,
,
为曲线
上一点,直线
交曲线
于另一点
,且点
在线段
上,直线
交曲线
于另一点
,求
的内切圆半径
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:kg),并将所得数据分组,画出频率分布直方图(如图所示).
![]()
(1)在下面表格中填写相应的频率;
分组 | 频率 |
| |
| |
| |
| |
| |
|
(2)估计数据落在
中的概率;
(3)将上面捕捞的100条鱼分别作一记分组频率号后再放回水库.几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条.请根据这一情况来估计该水库中鱼的总条数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
.
(1)若曲线
在点
处的切线方程为
,求函数
的解析式;
(2)讨论函数
的单调性;
(3)若对于任意的
,不等式
在
上恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点
的距离之比为定值
的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系
中,
点
.设点
的轨迹为
,下列结论正确的是( )
A.
的方程为![]()
B. 在
轴上存在异于
的两定点
,使得![]()
C. 当
三点不共线时,射线
是
的平分线
D. 在
上存在点
,使得![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为改进服务质量,在进场购物的顾客中随机抽取了
人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:
满意 | 不满意 | |
男 |
|
|
女 |
|
|
是否有
的把握认为顾客购物体验的满意度与性别有关?
若在购物体验满意的问卷顾客中按照性别分层抽取了
人发放价值
元的购物券.若在获得了
元购物券的
人中随机抽取
人赠其纪念品,求获得纪念品的
人中仅有
人是女顾客的概率.
附表及公式:
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com