精英家教网 > 高中数学 > 题目详情

【题目】古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系中,.设点的轨迹为,下列结论正确的是( )

A. 的方程为

B. 轴上存在异于的两定点,使得

C. 三点不共线时,射线的平分线

D. 上存在点,使得

【答案】BC

【解析】

通过设出点P坐标,利用即可得到轨迹方程,找出两点即可判断B的正误,设出点坐标,利用与圆的方程表达式解出就存在,解不出就不存在.

设点,则,化简整理得,即,故A错误;当时,,故B正确;对于C选项,,要证PO为角平分线,只需证明,即证,化简整理即证,设,则

,则证

,故C正确;对于D选项,设,可得,整理得,而点M在圆上,故满足,联立解得无实数解,于是D错误.故答案为BC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者。现从符合条件的志愿者中 随机抽取名按年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

(1)若从第组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第组各抽取多少名志愿者?

(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右顶点A(2,0),且过点
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(1,0)且斜率为k1(k1≠0)的直线l于椭圆C相交于E,F两点,直线AE,AF分别交直线x=3于M,N两点,线段MN的中点为P,记直线PB的斜率为k2 , 求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,且anan+1+ (an﹣an+1)+1=0,则a2016=(
A.1
B.﹣1
C.2+
D.2﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价

9

9.2

9.4

9.6

9.8

10

销量

100

94

93

90

85

78

(1)若销量与单价服从线性相关关系,求该回归方程;

(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。

附:对于一组数据,……

其回归直线的斜率的最小二乘估计值为

本题参考数值:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面四边形中,.

(1)若,求;

(2)设,若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A、B、C为⊙O上三点,B为 的中点,P为AC延长线上一点,PQ与⊙O相切于点Q,BQ与AC相交于点D.
(Ⅰ)证明:△DPQ为等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,不可能成立的是( )

A. 没有最大元素, 有一个最小元素 B. 没有最大元素, 也没有最小元素

C. 有一个最大元素, 有一个最小元素 D. 有一个最大元素, 没有最小元素

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当,求函数的单调区间;

(2)若函数上是减函数,求的最小值;

(3)证明:当时,.

查看答案和解析>>

同步练习册答案