【题目】古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系中,点.设点的轨迹为,下列结论正确的是( )
A. 的方程为
B. 在轴上存在异于的两定点,使得
C. 当三点不共线时,射线是的平分线
D. 在上存在点,使得
科目:高中数学 来源: 题型:
【题目】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者。现从符合条件的志愿者中 随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.
(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的右顶点A(2,0),且过点
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(1,0)且斜率为k1(k1≠0)的直线l于椭圆C相交于E,F两点,直线AE,AF分别交直线x=3于M,N两点,线段MN的中点为P,记直线PB的斜率为k2 , 求证:k1k2为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量件 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)若销量与单价服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。
附:对于一组数据,,……,
其回归直线的斜率的最小二乘估计值为;
本题参考数值:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B、C为⊙O上三点,B为 的中点,P为AC延长线上一点,PQ与⊙O相切于点Q,BQ与AC相交于点D.
(Ⅰ)证明:△DPQ为等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集与,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,不可能成立的是( )
A. 没有最大元素, 有一个最小元素 B. 没有最大元素, 也没有最小元素
C. 有一个最大元素, 有一个最小元素 D. 有一个最大元素, 没有最小元素
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com