精英家教网 > 高中数学 > 题目详情

【题目】图一是美丽的勾股树,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1勾股树,重复图二的作法,得到图三为第2勾股树,以此类推,已知最大的正方形面积为1,则第勾股树所有正方形的个数与面积的和分别为(

A. B. C. D.

【答案】A

【解析】

第1代“勾股树”中,小正方形的个数3=21+1﹣1=3,所有正方形的面积之和为2=(1+1)×1,第2代“勾股树”中,小正方形的个数7=22+1﹣1,所有的正方形的面积之和为3=(2+1)×1,以此类推,第n代“勾股树”所有正方形的个数为2n+1﹣1,第n代“勾股树”所有正方形的面积的和为:(n+1)×1=n+1.

解:第1代“勾股树”中,小正方形的个数3=21+1﹣1=3,

如图(2),设直角三角形的三条边长分别为abc

根据勾股定理得a2+b2c2

即正方形A的面积+正方形B的面积=正方形C的面积=1,

所有正方形的面积之和为2=(1+1)×1,

第2代“勾股树”中,小正方形的个数7=22+1﹣1,

如图(3),正方形E的面积+正方形F的面积=正方形A的面积,

正方形M的面积+正方形N的面积=正方形B的面积,

正方形E的面积+正方形F的面积+正方形M的面积+正方形N的面积=正方形A的面积+正方形B的面积=正方形C的面积=1,

所有的正方形的面积之和为3=(2+1)×1,

以此类推,第n代“勾股树”所有正方形的个数为2n+1﹣1,

n代“勾股树”所有正方形的面积的和为:(n+1)×1=n+1.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中,且

(1)当时,函数处的切线与直线平行,试求m的值;

(2)当时,令,若函数有两个极值点,且,求 的取值范围;

(3)当时,试讨论函数的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且椭圆过点.过点做两条相互垂直的直线分别与椭圆交于四点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若 ,探究:直线是否过定点?若是,请求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有两个不同的零点.

(1)求的取值范围;

(2)设 的两个零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当a=1时,若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中随机抽取部分高一学生调查其上学路上所需时间频(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为.

(1)求直方图中的值;

(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生 1200名请估计新生中有多少名学生可以申请住宿;

(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于 40分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.


优秀

非优秀

合计

甲班

10



乙班


30


合计



110

1)请完成上面的列联表;

2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从211进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的椭圆或双曲线的标准方程:

(1)椭圆的焦点在轴上,焦距为4,且经过点

(2)双曲线的焦点在轴上,右焦点为,过作重直于轴的直线交双曲线于两点,且,离心率为.

查看答案和解析>>

同步练习册答案