精英家教网 > 高中数学 > 题目详情

【题目】某校为了解高三年级不同性别的学生对取消艺术课的态度(支持或反对),进行了如下的调查研究,全年级共有1350人,男女生比例为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为,通过对被抽取学生的问卷调查,得到如下列联表:

支持

反对

总计

男生

30

女生

25

总计

1)完成列联表,并判断能否有的把握认为态度与性别有关?

2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.

参考公式及临界值表:

0.10

0.050

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

【答案】1)列联表见解析,没有(2

【解析】

1)根据题意,分别算出抽取样本中男生和女生的人数,便可完成列联表;求出,与临界值比较,即可得出能否有的把握认为态度与性别有关;

2)列举出基本事件,确定基本事件的个数,根据古典概型的概率公式,可得结论.

(1)由题意可知,全年级共有1350人,每人被抽到的概率均为

所以抽取样本容量为:

其中男生人数为:,女生人数为:

则列联表如下:

支持

反对

总计

男生

30

50

80

女生

45

25

70

总计

75

75

150

计算得

所以没有的把握认为态度与性别有关,

2)记6名男生为,其中为支持,为反对,

4名女生为,其中为支持,为反对,

随机抽取一男一女所有可能的情况有24种,分别为:

其中恰有一人支持一人反对的可能情况有12种,所以概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下:

类行业:858277788387

类行业:766780857981

类行业:8789768675849082

(Ⅰ)计算该城区这三类行业中每类行业的单位个数;

(Ⅱ)若从抽取的类行业这6个单位中,再随机选取3个单位进行某项调查,求选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知px2≤5x-4,qx2-(a+2)x+2a≤0.

(1)p是真命题,求对应x的取值范围;

(2)pq的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差为正数的等差数列,数列为等比数列,且.

(1)求数列的通项公式;

(2)设数列是由所有的项,且的项组成的数列,且原项数先后顺序保持不变,求数列的前2019项的和

(3)对任意给定的是否存在使成等差数列?若存在,用分别表示(只要写出一组即可);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年某地区初中升学体育考试规定:考生必须参加长跑、掷实心球、1分钟跳绳三项测试.某学校在九年级上学期开始,就为掌握全年级学生1分钟跳绳情况,抽取了100名学生进行测试,得到下面的频率分布直方图.

(Ⅰ)规定学生1分钟跳绳个数大于等于185为优秀.若在抽取的100名学生中,女生共有50人,男生1分钟跳绳个数大于等于185的有28人.根据已知条件完成下面的列联表,并根据这100名学生的测试成绩,判断能否有99%的把握认为学生1分钟跳绳成绩是否优秀与性别有关.

1分钟跳绳成绩

优秀

不优秀

合计

男生人数

28

女生人数

100

合计

100

(Ⅱ)根据往年经验,该校九年级学生经过训练,正式测试时每人1分钟跳绳个数都有明显进步.假设正式测试时每人1分钟跳绳个数都比九年级上学期开始时增加10个,全年级恰有2000名学生,若所有学生的1分钟跳绳个数服从正态分布,用样本数据的平均值和标准差估计,各组数据用中点值代替),估计正式测试时1分钟跳绳个数大于183的人数(结果四舍五入到整数

附: ,其中 .

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

若随机变量服从正态分布,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线为参数)与曲线相交于点,两点.

(1)求曲线的平面直角坐标系方程和直线的普通方程;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856331)

甲、乙两家快餐店对某日7个时段的光顾的客人人数进行统计并绘制茎叶图如下图所示(下面简称甲数据、乙数据),且乙数据的众数为17,甲数据的平均数比乙数据平均数少2.

(Ⅰ)求ab的值,并计算乙数据的方差;

(Ⅱ)现从乙数据中不大于16的数据中随机抽取两个,求至少有一个数据小于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.

(1)求这些产品质量指标值落在区间[75,85]内的概率;

(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[45,75)内的产品件数为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:

x(年)

2

3

4

5

6

y(万元)

1

2.5

3

4

4.5

1)若知道yx呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:.

查看答案和解析>>

同步练习册答案