精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinx•cos2
θ
2
+cosx•sinθ-sinx
(0<θ<π)在x=π处取最小值.
(1)求θ的值;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,已知a=1,b=
2
,f(A)=
3
2
,求角C.
(1)f(x)=2sinx•
1+cosθ
2
+cosx•sinθ-sinx=sin(x+θ)

∵当x=π时,f(x)取得最小值
∴sin(π+θ)=-1即sinθ=1
又∵0<θ<π,
θ=
π
2

(2)由(1)知f(x)=cosx
f(A)=cosA=
3
2
,且A为△ABC的内角∴A=
π
6

由正弦定理得sinB=
bsinA
a
=
2
2
B=
π
4
B=
4

B=
π
4
时,C=π-A-B=
12

B=
4
时,C=π-A-B=
π
12

综上所述,C=
12
C=
π
12
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案