| A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=x | B. | f(x)=x,g(x)=$\frac{{x}^{2}}{x}$ | ||
| C. | f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$ | D. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ |
分析 要表示同一个函数,必须有相同的对应法则,相同的定义域,观察四个选项,得到有两组函数的对应法则不同,有两组函数的定义域不同,只有D选项,整理以后完全相同.
解答 解:对于A,f(x)=$\sqrt{{x}^{2}}$=|x|,g(x)=x,两函数的对应法则和值域不同,不为同一函数;
对于B,f(x)=x(x∈R),g(x)=$\frac{{x}^{2}}{x}$=x(x≠0),两函数的定义域不同,不为同一函数;
对于C,f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$(x≥1),g(x)=$\sqrt{{x}^{2}-1}$(x≥1或x≤-1),两函数的定义域不同,不为同一函数;
对于D,f(x)=x,g(x)=$\root{3}{{x}^{3}}$=x,两函数的对应法则和定义域相同,为同一函数.
故选:D.
点评 本题考查判断两个函数是否为同一个函数,这种题目一般从三个方面来观察,绝大部分题目是定义域不同,有一小部分是对应法则不同,只有极个别的是值域不同.
科目:高中数学 来源: 题型:选择题
| A. | [-2,-1] | B. | (-2,-1] | C. | [-3,1] | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -14 | B. | -9 | C. | -5 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 社团 | 围棋 | 戏剧 | 足球 |
| 人数 | 10 | m | n |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{17}{10}$ | B. | $\frac{4}{5}$ | C. | -$\frac{13}{15}$ | D. | -$\frac{14}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=($\sqrt{x+1}$)2 | B. | y=$\root{3}{{x}^{3}}$+1 | C. | y=$\frac{{x}^{2}}{x}$+1 | D. | y=$\sqrt{{x}^{2}}$+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com