精英家教网 > 高中数学 > 题目详情
6.下列函数中,与函数y=log22x+1是同一个函数的是(  )
A.y=($\sqrt{x+1}$)2B.y=$\root{3}{{x}^{3}}$+1C.y=$\frac{{x}^{2}}{x}$+1D.y=$\sqrt{{x}^{2}}$+1

分析 分别判断函数的定义域和对应关系是否和已知函数一致即可.

解答 解:函数y=log22x+1=x+1(x∈R),
对于A,函数y=${(\sqrt{x+1})}^{2}$=x+1(x≥-1),与已知函数的定义域不同,不是同一个函数;
对于B,函数y=$\root{3}{{x}^{3}}$+1=x+1(x∈R),与已知函数的定义域相同,对应关系也相同,是同一个函数;
对于C,函数y=$\frac{{x}^{2}}{x}$+1=x+1(x≠0),与已知函数的定义域不同,不是同一个函数;
对于D,函数y=$\sqrt{{x}^{2}}$+1=|x|+1(x∈R),与已知函数的解析式不同,不是同一个函数.
故选:B.

点评 本题主要考查了判断两个函数是否为同一函数的问题,判断的标准是判断两个函数的定义域和对应法则是否相同.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知△ABC中,G是重心,三内角A,B,C的对边分别为a,b,c,且56a$\overrightarrow{GA}$+40b$\overrightarrow{GB}$+35c$\overrightarrow{GC}$=$\overrightarrow{0}$,则∠B=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四组函数中,表示同一函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=xB.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$
C.f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$D.f(x)=x,g(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x∈($\frac{π}{4}$,$\frac{π}{2}$),则$\frac{sin2x}{{{{sin}^2}x+4{{cos}^2}x}}$的最大值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是定义在[-1,1]上的奇函数.
(1)求f(x)的解析式;
(2)判断并证明f(x)的单调性;
(3)解不等式:f(x)-f(1-x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线$\frac{{\sqrt{3}}}{3}$x+y=0的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数z=$\frac{2i}{1-2i}$(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知关于x的一元二次函数f(x)=ax2-bx+1.
(1)设集合P={-1,1,2,3},Q={-3,-2,3,4},分别从集合P和Q中随机取一个数作为a和b,函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域$\left\{\begin{array}{l}{x-2y+2≥0}\\{x+2y+2≥0}\\{x-y-1≤0}\end{array}\right.$内的随机点,求函数y=f(x)在区间[1,+∞)上是减函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设 a、b、c 是不为零的实数,那么x=$\frac{n}{|a|}$+$\frac{|n|}{b}$-$\frac{n}{|c|}$的值有(  )
A.3 种B.4 种C.5 种D.6 种

查看答案和解析>>

同步练习册答案