精英家教网 > 高中数学 > 题目详情
1.已知f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是定义在[-1,1]上的奇函数.
(1)求f(x)的解析式;
(2)判断并证明f(x)的单调性;
(3)解不等式:f(x)-f(1-x)<0.

分析 (1)根据奇函数的性质f(-x)=-f(x),列出方程求出a、b的值,代入解析式;
(2)先判断出函数是减函数,再利用函数单调性的定义证明:取值,作差,变形,定号下结论.
(3)根据函数的单调性即可得到关于x的不等式组,解得即可.

解答 解:(1)∵f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是定义在[-1,1]上的奇函数,
∴f(0)=0,即$\frac{0+a}{0+0+1}$=0,∴a=0.
又∵f(-1)=-f(1),∴$\frac{-1}{2-b}$=-$\frac{1}{2+b}$,
∴b=0,
∴f(x)=$\frac{x}{{x}^{2}+1}$.
(2)函数f(x)在[-1,1]上为增函数.
证明如下,
任取-1≤x1<x2≤1,
∴x1-x2<0,-1<x1x2<1,
∴1-x1x2>0.
f(x1)-f(x2)=$\frac{{x}_{1}}{{x}_{1}^{2}+1}$-$\frac{{x}_{2}}{{x}_{2}^{2}+1}$
=$\frac{({x}_{1}-{x}_{2})(1-{x}_{1}{x}_{2})}{({x}_{1}^{2}+1)({x}_{2}^{2}+1)}$<0,
∴f(x1)<f(x2),
∴f(x)为[-1,1]上的增函数.
(3)∵f(x)-f(1-x)<0,
即f(x)<f(1-x),
∴$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤1-x≤1}\\{x<1-x}\end{array}\right.$
解得0≤x≤$\frac{1}{2}$,
∴解集为:{x|0≤x<$\frac{1}{2}$}

点评 本题考查奇函数的性质的应用,以及函数单调性的判断与证明,解题的关键是掌握函数单调性的定义证明步骤:取值,作差,变形,定号下结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知四棱锥P一ABCD中,平面PAD丄平面ABCD,其中ABCD为正方形,△PAD 为等腰直角三角形,PA=PD=$\sqrt{2}$,则四棱锥P-ABCD外接球的表面积为(  )
A.10πB.C.16πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设$\overrightarrow a$=(4,3),$\overrightarrow a$在$\overrightarrow b$方向上投影为$\frac{5\sqrt{2}}{2}$,$\overrightarrow b$在x轴正方向上的投影为2,且$\overrightarrow b$对应的点在第四象限,则$\overrightarrow b$=(2,14)或$(2,-\frac{2}{7})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)满足f(-x)=-f(x),f(x)=f(x+4),且当x∈(-1,0)时,f(x)=2x+$\frac{1}{5}$,则f(log224)=(  )
A.$\frac{17}{10}$B.$\frac{4}{5}$C.-$\frac{13}{15}$D.-$\frac{14}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的定义域
(1)f(x)=$\frac{\sqrt{x+1}}{x}$;
(2)$f(x)=\frac{1+{x}^{2}}{1-{x}^{2}}$
(3)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,与函数y=log22x+1是同一个函数的是(  )
A.y=($\sqrt{x+1}$)2B.y=$\root{3}{{x}^{3}}$+1C.y=$\frac{{x}^{2}}{x}$+1D.y=$\sqrt{{x}^{2}}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,a5=3,a10=18,求|a1|+|a2|+|a3|+…+|a10|=(  )
A.80B.81C.82D.83

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在空间直角坐标系中,点M(1,2,3)关于xOy平面的对称点的坐标是(  )
A.(-1,-2,3)B.(1,-2,-3)C.(-1,2,-3)D.(1,2,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x||2x-1|≤3},集合B={x|x2+(4-a)x-4a>0},若A∩B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案