分析 由G为三角形的重心,根据中线的性质及向量的加法法则分别表示出$\overrightarrow{GA}$,$\overrightarrow{GC}$和$\overrightarrow{GB}$,代入化简后的式子中,然后又根据$\overrightarrow{CA}$等于$\overrightarrow{CB}$加$\overrightarrow{BA}$,把上式进行化简,最后得到关于$\overrightarrow{BA}$和$\overrightarrow{BC}$的关系式,由$\overrightarrow{BA}$和$\overrightarrow{BC}$为非零向量,得到两向量前的系数等于0,列出关于a,b及c的方程组,不妨令c=56,即可求出a与b的值,然后根据余弦定理表示出cosB,把a,b,c的值代入即可求出cosB的值,由B的范围,利用特殊角的三角函数值即可得到B的度数.
解答 解:因为由点G为三角形的重心,根据中线的性质及向量加法法则得:
3$\overrightarrow{GA}$=$\overrightarrow{BA}+\overrightarrow{CA}$,3$\overrightarrow{GB}$=$\overrightarrow{CB}$+$\overrightarrow{AB}$,3$\overrightarrow{GC}$=$\overrightarrow{AC}$+$\overrightarrow{BC}$,
代入上式得:56a($\overrightarrow{BA}+\overrightarrow{CA}$)+40b($\overrightarrow{AB}+\overrightarrow{CB}$)+35($\overrightarrow{AC}+\overrightarrow{BC}$)=$\overrightarrow{0}$,
又$\overrightarrow{CA}=\overrightarrow{CB}+\overrightarrow{BA}$,上式可化为:
56a(2$\overrightarrow{BA}$+$\overrightarrow{CB}$)+40b($\overrightarrow{AB}$+$\overrightarrow{CB}$)+35c(-$\overrightarrow{BA}$+2$\overrightarrow{BC}$)=$\overrightarrow{0}$,
即(112a-40b-35c)$\overrightarrow{BA}$+(-56a-40b+70c)$\overrightarrow{BC}$=$\overrightarrow{0}$,
则有$\left\{\begin{array}{l}{112a-40b-35c=0}\\{-56a-40b+70c=0}\end{array}\right.$,
令c=56,解得:$\left\{\begin{array}{l}{a=35}\\{b=49}\end{array}\right.$,
所以cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{3{5}^{2}+5{6}^{2}-4{9}^{2}}{2×35×56}$=$\frac{1}{2}$,
∵B∈(0°,180°),
∴B=60°.
故答案为:60°.
点评 本题考查学生灵活运用正弦、余弦定理化简求值,掌握向量的加法法则及中线的性质,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-2,-1] | B. | (-2,-1] | C. | [-3,1] | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10π | B. | 4π | C. | 16π | D. | 8π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①用简单随机抽样法,②用系统抽样法 | |
| B. | ①用分层抽样法,②用简单随机抽样法 | |
| C. | ①用系统抽样法,②用分层抽样法 | |
| D. | ①用分层抽样法,②用系统抽样法 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -14 | B. | -9 | C. | -5 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 社团 | 围棋 | 戏剧 | 足球 |
| 人数 | 10 | m | n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=($\sqrt{x+1}$)2 | B. | y=$\root{3}{{x}^{3}}$+1 | C. | y=$\frac{{x}^{2}}{x}$+1 | D. | y=$\sqrt{{x}^{2}}$+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com