精英家教网 > 高中数学 > 题目详情
16.已知△ABC中,G是重心,三内角A,B,C的对边分别为a,b,c,且56a$\overrightarrow{GA}$+40b$\overrightarrow{GB}$+35c$\overrightarrow{GC}$=$\overrightarrow{0}$,则∠B=60°.

分析 由G为三角形的重心,根据中线的性质及向量的加法法则分别表示出$\overrightarrow{GA}$,$\overrightarrow{GC}$和$\overrightarrow{GB}$,代入化简后的式子中,然后又根据$\overrightarrow{CA}$等于$\overrightarrow{CB}$加$\overrightarrow{BA}$,把上式进行化简,最后得到关于$\overrightarrow{BA}$和$\overrightarrow{BC}$的关系式,由$\overrightarrow{BA}$和$\overrightarrow{BC}$为非零向量,得到两向量前的系数等于0,列出关于a,b及c的方程组,不妨令c=56,即可求出a与b的值,然后根据余弦定理表示出cosB,把a,b,c的值代入即可求出cosB的值,由B的范围,利用特殊角的三角函数值即可得到B的度数.

解答 解:因为由点G为三角形的重心,根据中线的性质及向量加法法则得:
3$\overrightarrow{GA}$=$\overrightarrow{BA}+\overrightarrow{CA}$,3$\overrightarrow{GB}$=$\overrightarrow{CB}$+$\overrightarrow{AB}$,3$\overrightarrow{GC}$=$\overrightarrow{AC}$+$\overrightarrow{BC}$,
代入上式得:56a($\overrightarrow{BA}+\overrightarrow{CA}$)+40b($\overrightarrow{AB}+\overrightarrow{CB}$)+35($\overrightarrow{AC}+\overrightarrow{BC}$)=$\overrightarrow{0}$,
又$\overrightarrow{CA}=\overrightarrow{CB}+\overrightarrow{BA}$,上式可化为:
56a(2$\overrightarrow{BA}$+$\overrightarrow{CB}$)+40b($\overrightarrow{AB}$+$\overrightarrow{CB}$)+35c(-$\overrightarrow{BA}$+2$\overrightarrow{BC}$)=$\overrightarrow{0}$,
即(112a-40b-35c)$\overrightarrow{BA}$+(-56a-40b+70c)$\overrightarrow{BC}$=$\overrightarrow{0}$,
则有$\left\{\begin{array}{l}{112a-40b-35c=0}\\{-56a-40b+70c=0}\end{array}\right.$,
令c=56,解得:$\left\{\begin{array}{l}{a=35}\\{b=49}\end{array}\right.$,
所以cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{3{5}^{2}+5{6}^{2}-4{9}^{2}}{2×35×56}$=$\frac{1}{2}$,
∵B∈(0°,180°),
∴B=60°.
故答案为:60°.

点评 本题考查学生灵活运用正弦、余弦定理化简求值,掌握向量的加法法则及中线的性质,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若抛物线y2=2px的焦点与圆x2+y2-4x=0的圆心重合,则p的值为(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知不等式$\frac{1}{x-1}$<1的解集为p,不等式x2+(a-1)x-a>0的解集为q,若q是p的必要不充分条件,则实数a的取值范围是(  )
A.[-2,-1]B.(-2,-1]C.[-3,1]D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=-2i+$\frac{3-i}{i}$,则复数z的共轭复数$\overline z$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知四棱锥P一ABCD中,平面PAD丄平面ABCD,其中ABCD为正方形,△PAD 为等腰直角三角形,PA=PD=$\sqrt{2}$,则四棱锥P-ABCD外接球的表面积为(  )
A.10πB.C.16πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要完成下述两项调查,应采用的抽样方法是(  )
①某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为调查社会购买力的某项指标,要从中抽取1个容量为100户的样本;
②某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况.
A.①用简单随机抽样法,②用系统抽样法
B.①用分层抽样法,②用简单随机抽样法
C.①用系统抽样法,②用分层抽样法
D.①用分层抽样法,②用系统抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知递减等差数列{an}中,a3=-1,a1,a4,-a6成等比,若Sn为数{an}的前n项和,则S7的值为(  )
A.-14B.-9C.-5D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某班级参加学校三个社团的人员分布如表:
社团围棋戏剧足球
人数10mn
已知从这些同学中任取一人,得到是参加围棋社团的同学的概率为$\frac{5}{13}$.
(1)求从中任抽一人,抽出的是参加戏剧社团或足球社团的同学的概率;
(2)若从中任抽一人,抽出的是参加围棋社团或足球社团的同学的概率为$\frac{11}{13}$,求m和n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,与函数y=log22x+1是同一个函数的是(  )
A.y=($\sqrt{x+1}$)2B.y=$\root{3}{{x}^{3}}$+1C.y=$\frac{{x}^{2}}{x}$+1D.y=$\sqrt{{x}^{2}}$+1

查看答案和解析>>

同步练习册答案