精英家教网 > 高中数学 > 题目详情
2.集合A={1,2,3},B={-1,2}.设映射f:A→B,如果集合B中的元素都是A中元素在f下的象,那么这样的映射有6个.

分析 先求出映射f:A→B的个数和集合B中的元素不都是A中元素在f下的象的映射的个数,从而得到集合B中的元素都是A中元素在f下的象的映射的个数.

解答 解:∵集合A中的元素1,2,3,各有2种对应情况,
∴映射f:A→B的个数是2×2×2=8个.
∵集合B中的元素不都是A中元素在f下的象的映射有2个,
∴集合B中的元素都是A中元素在f下的象的映射一共有8-2=6个.
故答案为6.

点评 本题考查映射的概念和应用,解题时要认真审题,仔细求解,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\overrightarrow a$•$\overrightarrow b$,且$\overrightarrow a$=(cos2x+1,1),$\overrightarrow b$=(1,$\sqrt{3}$sin2x-1).
(1)求函数f(x)的最小正周期、最大值和最小值;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=cosxsinx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(1)求f(x)的单调增区间;
(2)在△ABC中,A为锐角且f(A)=$\frac{\sqrt{3}}{2}$,$\overrightarrow{AB}$+$\overrightarrow{AC}$=3$\overrightarrow{AD}$,AB=$\sqrt{3}$,AD=2,求sin∠BAD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过点(1,2)且与点A(2,3)和点B(4,-5)距离相等的直线l的方程是3x+2y-7=0或4x+y-6=0(请写一般式).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四组函数中,表示同一函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=xB.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$
C.f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$D.f(x)=x,g(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+4x+3,
(1)若f(a+1)=0,求a的值;
(2)若g(x)=f(x)+cx为偶函数,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x∈($\frac{π}{4}$,$\frac{π}{2}$),则$\frac{sin2x}{{{{sin}^2}x+4{{cos}^2}x}}$的最大值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线$\frac{{\sqrt{3}}}{3}$x+y=0的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\sqrt{x+1}$-$\frac{1}{2-x}$的定义域为(  )
A.[-1,2)∪(2,+∞)B.(-1,+∞)C.[-1,2)D.[-1,∞)

查看答案和解析>>

同步练习册答案