分析 (1))先根据 f(x)=$\overrightarrow a$•$\overrightarrow b$求得函数f(x)的解析式,利用两角和公式化简整理后,利用三角函数的性质求函数f(x)的最小正周期、最大值和最小值.
(2)根据整理出来的函数的表达式,利用正弦函数的单调性可求得函数的单调递区间.
解答 解:(1)∵f(x)=$\overrightarrow a$•$\overrightarrow b$,且$\overrightarrow a$=(cos2x+1,1),$\overrightarrow b$=(1,$\sqrt{3}$sin2x-1).
∴f(x)=cos2x+1+$\sqrt{3}$sin2x-1=2($\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)=2sin(2x+$\frac{π}{6}$),
即$f(x)=2sin(2x+\frac{π}{6})$.
∴T=π;f(x)max=2,f(x)min=-2
(2)由(1)知,$f(x)=2sin(2x+\frac{π}{6})$.
则2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,
所以kπ+$\frac{π}{3}$≤x≤kπ+$\frac{2π}{3}$,
故函数f(x)的单调递减区间为:$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]$,k∈Z.
点评 本题考查三角函数的性质,是一个以向量为载体的题目,这种题目经常出现在高考卷中,是一个典型的三角函数解答题目.
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ②③ | C. | ②③④ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,-1] | B. | (-2,-1] | C. | [-3,1] | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①用简单随机抽样法,②用系统抽样法 | |
| B. | ①用分层抽样法,②用简单随机抽样法 | |
| C. | ①用系统抽样法,②用分层抽样法 | |
| D. | ①用分层抽样法,②用系统抽样法 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com