分析 先利用定积分分别表示出阴影部分的面积S1与S2,然后求出S1+S2关于t的函数解析式和定义域,利用导数研究函数的单调性,从而求出函数的最小值.
解答 解 S1面积等于边长为t与t2的矩形面积去掉曲线y=x2与x轴、直线x=t所围成的面积,即S1=t•t2-?${\;}_{0}^{t}$x2dx=$\frac{2}{3}$t3.
S2的面积等于曲线y=x2与x轴,x=t,x=1围成的面积去掉矩形面积,矩形边长分别为t2,1-t,即S2=?${\;}_{t}^{1}$x2dx-t2(1-t)=$\frac{2}{3}$t3-t2+$\frac{1}{3}$.
所以阴影部分面积S=S1+S2=$\frac{4}{3}$t3-t2+$\frac{1}{3}$(0≤t≤1).
令S′(t)=4t2-2t=4t(t-$\frac{1}{2}$)=0时,得t=0或t=$\frac{1}{2}$.
当t=0时,S=$\frac{1}{3}$;
当t=$\frac{1}{2}$时,S=$\frac{1}{4}$;
当t=1时,S=$\frac{2}{3}$.
综上所述,当t=$\frac{1}{2}$时,S最小,且最小值为$\frac{1}{4}$.
点评 本题主要考查了定积分在求面积中的应用,以及利用导数研究函数的单调性和求函数最值,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{81}+\frac{y^2}{16}=1$ | B. | x2+y2=1 | C. | $\frac{x^2}{27}+\frac{y^2}{8}=1$ | D. | $\frac{x^2}{3}+\frac{y^2}{2}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com