精英家教网 > 高中数学 > 题目详情
13.在同一直角坐标系中,方程$\frac{x^2}{9}+\frac{y^2}{4}=1$所对应的图形经过伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$后的图形所对应的方程为(  )
A.$\frac{x^2}{81}+\frac{y^2}{16}=1$B.x2+y2=1C.$\frac{x^2}{27}+\frac{y^2}{8}=1$D.$\frac{x^2}{3}+\frac{y^2}{2}=1$

分析 利用伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$,可得x=3x′,y=2y′,代入$\frac{x^2}{9}+\frac{y^2}{4}=1$,即可得出结论.

解答 解:∵$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$,
∴x=3x′,y=2y′,
∵$\frac{x^2}{9}+\frac{y^2}{4}=1$,
∴x′2+y′2=1,
∴x2+y2=1,
故选B.

点评 本题考查伸缩变换,考查圆的方程,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知A(3,0),B(0,3),C(cosα,sinα)
(1)若$\overrightarrow{AC}•\overrightarrow{BC}$=-1,求sinα-cosα的值;
(2)若|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{13}$,且α∈(0,π),求$\overrightarrow{OB}$与$\overrightarrow{OC}$的夹角的正弦值.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$y={3^{\sqrt{{x^2}-4}}}$的值域(  )
A.[1,+∞)B.(1,+∞)C.(2,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}为等比数列,且a1+a3=5,a2+a4=10.
(1)若an=16,求n;
(2)设数列{an}的前n项和为Sn,求S8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.边长为2的正三角形绕其一边旋转一周得一几何体,则其表面积与俯视图(垂直于旋转轴)的面积分别为(  )
A.$2\sqrt{3}π,3π$B.$4\sqrt{3}π,3π$C.$\sqrt{3}π,2π$D.3π,2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x∈R,向量$\overrightarrow a=(2,x)$,$\overrightarrow b=(3,-2)$且$\overrightarrow a⊥\overrightarrow b$,则$|{\overrightarrow a+\overrightarrow b}|$=(  )
A.5B.$\sqrt{26}$C.2$\sqrt{6}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.Rt△ABC中,斜边BC为6,以BC的中点O为圆心,作半径为2的圆,分别交BC于P、Q两点,则|AP|2+|AQ|2+|PQ|2=42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有如下几种说法:
①若p∨q为真命题,则p、q均为真命题;
②命题“?x0∈R,2x0≤0”的否定是?x∈R,2x>0;
③直线l:y=kx+l与圆O:x2+y2=1相交于A、B两点,则“k=l”是△OAB的面积为$\frac{1}{2}$的充分而不必要条件;
④随机变量ξ-N(0,1),已知φ(-1.96)=0.025,则 P(|ξ|<1.96 )=0.975.
其中正确的为(  )
A.①④B.②③C.②③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在区间[0,1]上给定曲线y=x2.试在此区间内确定点t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值.

查看答案和解析>>

同步练习册答案