精英家教网 > 高中数学 > 题目详情
2.有如下几种说法:
①若p∨q为真命题,则p、q均为真命题;
②命题“?x0∈R,2x0≤0”的否定是?x∈R,2x>0;
③直线l:y=kx+l与圆O:x2+y2=1相交于A、B两点,则“k=l”是△OAB的面积为$\frac{1}{2}$的充分而不必要条件;
④随机变量ξ-N(0,1),已知φ(-1.96)=0.025,则 P(|ξ|<1.96 )=0.975.
其中正确的为(  )
A.①④B.②③C.②③④D.②④

分析 利用复合命题的真假判断①的正误;命题的否定判断②的正误;直线与圆的位置关系判断③的正误;利用二项分布判断④的正误.

解答 解:对于①,若p∨q为真命题,则p,q至少有一个为真命题,①错误.
对于②,命题“?x0∈R,2x0≤0”的否定是?x∈R,2x>0,满足特称命题与全称命题的否定关系,正确.
对于③,直线l:y=kx+l恒过(0,1)点与圆O:x2+y2=1相交于A、B两点,则“k=±l”是△OAB的面积为$\frac{1}{2}$;
“k=l”是△OAB的面积为$\frac{1}{2}$的充分而不必要条件;正确;
对于④,随机变量ξ~N(0,1),已知Φ(-1.96)=0.025,则P(|ξ|<1.96)=P(-1.96<ξ<1.96)=1-2×0.025=0.95.④错误.
故选:B.

点评 标题考查命题的真假的判断,复合命题以及命题否定、充要条件等知识点,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,已知AB⊥平面BEC,AB∥CD,AB=BC=4,CD=2,△BEC为等边三角形,F,G分别是AB,CD的中点.求证.
(Ⅰ)平面ABE⊥平面ADE;
(Ⅱ)求平面ADE与平面EFG所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在同一直角坐标系中,方程$\frac{x^2}{9}+\frac{y^2}{4}=1$所对应的图形经过伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$后的图形所对应的方程为(  )
A.$\frac{x^2}{81}+\frac{y^2}{16}=1$B.x2+y2=1C.$\frac{x^2}{27}+\frac{y^2}{8}=1$D.$\frac{x^2}{3}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知m,n是空间中两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是(  )
A.若m⊥n,n⊥α,则m∥αB.若α⊥β,m∥α,则m⊥β
C.若m∥α,n∥β,m∥n,则α∥βD.若m⊥β,m∥α,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=-2{sin^2}x-2\sqrt{3}sinxcosx$的最小正周期和最大值分别(  )
A.$T=2π,{y_{max}}=2\sqrt{3}$B.$T=π,{y_{max}}=2\sqrt{3}$C.T=π,ymax=3D.T=π,ymax=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:
实验顺序第一次第二次第三次第四次第五次
零件数
x(个)
1020304050
加工时间y(分钟)6266758488
(1)请根据五次试验的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)根据(1)得到的线性回归方程预测加工70个零件所需要的时间.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}x$,其中$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\sum_{i=1}^{n}$yi

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列例题:
①若奇函数f(x)对定义域内任意x都有f(x)=f(2-x),则函数f(x)为周期函数;
②函数f(x)=(x-3)e-x的单调递增区间为(2,+∞);
③若函数f(x)=f'($\frac{π}{4}$)cosx+sinx,则f($\frac{π}{4}$)的值为1;
④函数f(x)=2|x||log0.5x|-1的零点的个数为2,
其中真命题是①③④(将你认为真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.以下四个命题中:
①已知圆C上一定点A和一动点B,O为坐标原点,若$\overrightarrow{OP}=\frac{1}{2}({\overrightarrow{OA}+\overrightarrow{OB}}$),则动点P的轨迹为圆;
②设A、B为两个定点,k为非零常数,|$\overrightarrow{PA}}$|-|${\overrightarrow{PB}}$|=k,则动点P的轨迹为双曲线;
③0<θ<$\frac{π}{4}$,则双曲线C1:$\frac{x^2}{{{{cos}^2}θ}}-\frac{y^2}{{{{sin}^2}θ}}$=1与C2:$\frac{y^2}{{{{sin}^2}θ}}-\frac{x^2}{{{{sin}^2}θ{{tan}^2}θ}}$=1的离心率相同;
④已知两定点F1(-1,0),F2(1,0)和一动点P,若|PF1|•|PF2|=a2(a≠0),则点P的轨迹关于原点对称.
其中正确命题的序号为①③④        .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\overrightarrow a$•$\overrightarrow b$,且$\overrightarrow a$=(cos2x+1,1),$\overrightarrow b$=(1,$\sqrt{3}$sin2x-1).
(1)求函数f(x)的最小正周期、最大值和最小值;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案