分析 ①由题意,CP⊥AB,可得动点P的轨迹为以CA为直径的圆;②利用双曲线的定义,即可得出结论;③求出离心率,即可判断;④化简整理,即可分析其正误.
解答 解:①由题意,CP⊥AB,∴动点P的轨迹为以CA为直径的圆,正确;
②平面内与两个定点F1,F2的距离的差的绝对值等于常数k(k<|F1F2|)的点的轨迹叫做双曲线,①中当0<k<|AB|时是双曲线的一支,当k=|AB|时,表示射线,∴不正确;
③0<θ<$\frac{π}{4}$,则双曲线C1:$\frac{x^2}{{{{cos}^2}θ}}-\frac{y^2}{{{{sin}^2}θ}}$=1与C2:$\frac{y^2}{{{{sin}^2}θ}}-\frac{x^2}{{{{sin}^2}θ{{tan}^2}θ}}$=1的离心率相同,都为$\frac{1}{co{s}^{2}θ}$,正确;
④设P(x,y)为曲线|PF1|•|PF2|=$\sqrt{(x+1)^{2}+{y}^{2}}$•$\sqrt{(x-1)^{2}+{y}^{2}}$=a2(a≠0)上任意一点,
则P(x,y)关于原点(0,0)的对称点为P′(-x,-y),可得P′(-x,-y)也在曲线$\sqrt{(x+1)^{2}+{y}^{2}}$•$\sqrt{(x-1)^{2}+{y}^{2}}$=a2(a≠0)上,
∴点P的轨迹曲线$\sqrt{(x+1)^{2}+{y}^{2}}$•$\sqrt{(x-1)^{2}+{y}^{2}}$=a2(a≠0)关于原点对称,即④正确;
综上所述,正确的是①③④.
故答案为①③④.
点评 本题考查命题的真假判断与应用,着重考查圆锥曲线的概念及应用,考查转化思想与运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ②③ | C. | ②③④ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①用简单随机抽样法,②用系统抽样法 | |
| B. | ①用分层抽样法,②用简单随机抽样法 | |
| C. | ①用系统抽样法,②用分层抽样法 | |
| D. | ①用分层抽样法,②用系统抽样法 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com