分析 由正切函数的性质判断①;求出函数的定义域判断②;举例说明③错误;利用配方法求出函数最值说明④正确.
解答 解:①y=tanx在其定义域内不是增函数,但有无数多个单调增区间,故①错误;
②由x+$\frac{π}{4}≠\frac{π}{2}+kπ$,得x$≠\frac{π}{4}+kπ,k∈Z$,
∴函数y=tan(x+$\frac{π}{4}$)的定义域是{x|x≠$\frac{π}{4}+kπ$,k∈Z},故②正确;
③若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{b}$,则必有$\overrightarrow{b}=\overrightarrow{c}$,错误,如$\overrightarrow{a}=\overrightarrow{0}$,$\overrightarrow{b}、\overrightarrow{c}$可以是任意两个向量;
④函数y=cos2x+sinx=-sin2x+sinx+1=$-(sinx-\frac{1}{2})^{2}+\frac{5}{4}$,
∵-1≤sinx≤1,∴当sinx=-1时,函数y=cos2x+sinx的最小值为-1,故④正确.
故答案为:②④.
点评 本题考查命题的真假判断与应用,考查了函数的性质,训练了利用配方法求函数的最值,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 实验顺序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
| 零件数 x(个) | 10 | 20 | 30 | 40 | 50 |
| 加工时间y(分钟) | 62 | 66 | 75 | 84 | 88 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 164石 | B. | 178石 | C. | 189石 | D. | 196石 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com