分析 (1)先求f(x)的导数f'(x),再求f(0),由题意知f(0)=1,f'(0)=0,从而求出b,c的值;
(2)求导数,利用f(a)=0,即可求出实数a的值.
解答 解:(1)因为函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c,所以导数f'(x)=x2-ax+b,
又因为曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,
所以f(0)=1,f'(0)=0,即b=0,c=1.
(2)由(1),得f'(x)=x2-ax=x(x-a)(a>0)
由f'(x)=0得x=0或x=a,
∵函数f(x)有且只有两个不同的零点,
所以f(0)=0或f(a)=0,
∵f(0)=1,
∴f(a)=$\frac{1}{3}$a3-$\frac{1}{2}{a}^{3}$+1=0,
∴a=$\root{3}{6}$.
点评 本题主要考查导数的概念及应用:求极值,解题中必须注意过某点的切线与在某点处的切线的区别,本题就是一个很好的例子,同时考查了字母的运算能力,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-1,1) | B. | (-∞,-1)∪(1,+∞) | C. | (1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 焦点在x轴上的椭圆 | B. | 焦点在y轴上的椭圆 | ||
| C. | 过原点的直线 | D. | 圆心在原点的圆 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{2}{3}$ | C. | 4 | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com