| A. | 焦点在x轴上的椭圆 | B. | 焦点在y轴上的椭圆 | ||
| C. | 过原点的直线 | D. | 圆心在原点的圆 |
分析 参数方程$\left\{{\begin{array}{l}{x=4sinθ}\\{y=5cosθ}\end{array}}\right.$,消去参数得到普通方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{25}$=1,即可得出结论.
解答 解:参数方程$\left\{{\begin{array}{l}{x=4sinθ}\\{y=5cosθ}\end{array}}\right.$,消去参数得到普通方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{25}$=1,
表示的曲线是焦点在y轴上的椭圆.
故选B.
点评 本题考查参数方程与普通方程的转化,考查椭圆方程,比较基础.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{435600}$-$\frac{{y}^{2}}{564400}$=1(x>0) | B. | $\frac{{x}^{2}}{64{0}^{2}}$-$\frac{{y}^{2}}{48{0}^{2}}$=1(x>0) | ||
| C. | $\frac{{x}^{2}}{435600}$+$\frac{{y}^{2}}{564400}$=1 | D. | $\frac{{x}^{2}}{64{0}^{2}}$+$\frac{{y}^{2}}{48{0}^{2}}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com