精英家教网 > 高中数学 > 题目详情
9.参数方程$\left\{{\begin{array}{l}{x=4sinθ}\\{y=5cosθ}\end{array}}\right.$表示的曲线是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.过原点的直线D.圆心在原点的圆

分析 参数方程$\left\{{\begin{array}{l}{x=4sinθ}\\{y=5cosθ}\end{array}}\right.$,消去参数得到普通方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{25}$=1,即可得出结论.

解答 解:参数方程$\left\{{\begin{array}{l}{x=4sinθ}\\{y=5cosθ}\end{array}}\right.$,消去参数得到普通方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{25}$=1,
表示的曲线是焦点在y轴上的椭圆.
故选B.

点评 本题考查参数方程与普通方程的转化,考查椭圆方程,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.解下列不等式
(1)x2+x-2≤0
(2)$\frac{x-1}{(x-2)(x-3)}≥0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C处的乙船,已知乙船行驶的速度是每小时20$\sqrt{7}$海里,试问:乙船沿直线方向前往救援需要花多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l经过点P(2,$\frac{7}{4}$),且斜率为$\frac{3}{4}$;
(1)求直线l的方程;
(2)若直线m与l平行,且点P到直线m的距离为3,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c(a>0),曲线y=f(x)在点(0,f(0))处的切线方程为y=1
(1)求b,c的值;
(2)若函数f(x)有且只有两个不同的零点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,矩形ADEF和矩形ABCD有公共边AD.
(1)若它们所在平面互相垂直,AB=2,AD=4,AF=3,设∠AEB=α,∠EBD=β,则cosα:cosβ=$\sqrt{5}$:2.
(2)若它们所在的平面成60°的二面角,AB=CB=2a,DE=a,则BE=$\sqrt{7}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知△ABC的内角A,B,C的对边分别为a,b,c,且a=2,b=4,cosB=$\frac{3}{5}$,则sinA=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.相距1600m的两个哨所A、B,听到远处传来的炮弹爆炸声,已知当时的声音速度是320m/s,在A哨所听到的爆炸声的时间比在B哨所听到时迟4s,若以AB所在直线为x轴.以线段AB的中垂线为y轴,则爆炸点所在曲线的方程可以是(  )
A.$\frac{{x}^{2}}{435600}$-$\frac{{y}^{2}}{564400}$=1(x>0)B.$\frac{{x}^{2}}{64{0}^{2}}$-$\frac{{y}^{2}}{48{0}^{2}}$=1(x>0)
C.$\frac{{x}^{2}}{435600}$+$\frac{{y}^{2}}{564400}$=1D.$\frac{{x}^{2}}{64{0}^{2}}$+$\frac{{y}^{2}}{48{0}^{2}}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c.若$\frac{{a}^{2}{-(b-c)}^{2}}{bc}$=1,求角A的大小.

查看答案和解析>>

同步练习册答案