精英家教网 > 高中数学 > 题目详情
14.已知x,y均为正实数,则$\frac{x}{2x+y}$+$\frac{y}{x+2y}$的最大值为(  )
A.2B.$\frac{2}{3}$C.4D.$\frac{4}{3}$

分析 利用换元法将所求转化为利用基本不等式求最大值.

解答 解:设2x+y=m,x+2y=n,
则x=$\frac{2}{3}m-\frac{1}{3}n$,y=$\frac{2}{3}n-\frac{1}{3}m$,(m>0,n>0)
∴$\frac{x}{2x+y}$+$\frac{y}{x+2y}$=$\frac{4}{3}-\frac{1}{3}$($\frac{m}{n}+\frac{n}{m}$)≤$\frac{4}{3}-\frac{1}{3}×2$=$\frac{2}{3}$,
当且仅当m=n时取等号;
故选:B

点评 本题考查换元法、基本不等式的运用,正确换元是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c(a>0),曲线y=f(x)在点(0,f(0))处的切线方程为y=1
(1)求b,c的值;
(2)若函数f(x)有且只有两个不同的零点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=x2-4x+4的零点是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{\frac{x+1}{x-1},x≠1}\\{1,x=1}\end{array}\right.$,则f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{4031}{2016}$)的值为4031.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若(∁UA)∩B=∅,求m的值.
(2)设集合A={x|-2≤x≤5},B={x|n+1≤x≤2n-1},B⊆A,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c.若$\frac{{a}^{2}{-(b-c)}^{2}}{bc}$=1,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约(  )
A.164石B.178石C.189石D.196石

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.取一段长为5米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1米的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的前n项和为Sn,且满足an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,若a1=2,则{an}的前2017项的积为(  )
A.1B.2C.-6D.-586

查看答案和解析>>

同步练习册答案