精英家教网 > 高中数学 > 题目详情
6.我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约(  )
A.164石B.178石C.189石D.196石

分析 根据216粒内夹谷27粒,可得比例,即可得出结论.

解答 解:由已知,抽得样本中含谷27粒,占样本的比例为$\frac{27}{216}$=$\frac{1}{8}$,
则由此估计总体中谷的含量约为1512×$\frac{1}{8}$=189石.
故选:C.

点评 本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在下列四个命题中:
①y=tanx在其定义域内为增函数;
 ②函数y=tan(x+$\frac{π}{4}$)的定义域是$\{\left.x\right|x≠\frac{π}{4}+kπ,k∈Z\}$    
③若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{b}$,则必有$\overrightarrow{c}$=$\overrightarrow{b}$;  
④函数y=cos2x+sinx的最小值为-1.
把正确的命题的序号都填在横线上②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+t,x<0}\\{x+lnx,x>0}\end{array}\right.$,其中t是实数.设A,B为该函数图象上的两点,横坐标分别为x1,x2,且x1<x2
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若x2<0,函数f(x)的图象在点A,B处的切线互相垂直,求x1-x2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x,y均为正实数,则$\frac{x}{2x+y}$+$\frac{y}{x+2y}$的最大值为(  )
A.2B.$\frac{2}{3}$C.4D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要完成下述两项调查,应采用的抽样方法是(  )
①某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为调查社会购买力的某项指标,要从中抽取1个容量为100户的样本;
②某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况.
A.①用简单随机抽样法,②用系统抽样法
B.①用分层抽样法,②用简单随机抽样法
C.①用系统抽样法,②用分层抽样法
D.①用分层抽样法,②用系统抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥S-ABC,满足SA,SB,SC两两垂直,且SA=SB=SC=2,Q是三棱锥S-ABC外接球上一动点,则点Q到平面ABC的距离的最大值为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,已知S是边长为1的正三角形所在平面外一点,且SA=SB=SC=1,M,N分别是AB,SC的中点,求异面直线SM与BN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点P为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左、右焦点,I为△F1PF2的内心,若2(S${\;}_{△P{F}_{1}I}$-S${\;}_{△P{F}_{2}I}$)=S${\;}_{△{F}_{1}{F}_{2}I}$,则该双曲线的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果M={(x,y)|y=x},P={(x,y)|y=x2},则M∩P的子集的个数为(  )
A.4B.0C.1D.2

查看答案和解析>>

同步练习册答案