精英家教网 > 高中数学 > 题目详情
9.(1)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若(∁UA)∩B=∅,求m的值.
(2)设集合A={x|-2≤x≤5},B={x|n+1≤x≤2n-1},B⊆A,求n的取值范围.

分析 (1)确定集合A,(∁UA)∩B=∅,根据集合的基本运算即可求m的值;
(2)根据B⊆A,建立条件关系即可求实数n的取值范围.

解答 解:(1)∵U=R,集合A={x|x2+3x+2=0}={-2,-1},B={x|x2+(m+1)x+m=0}={x|(x+1)(x+m)=0};
(CUA)∩B=ϕ,
可得:B⊆A,
当m=1时,则B={-1},符合B⊆A;
当m≠1时,则B={-1,-m},
∵B⊆A,
∴-m=-2,即m=2,
故得实数m为1或2.
(2)集合A={x|-2≤x≤5},B={x|n+1≤x≤2n-1},
∵B⊆A,
∴有:$\left\{\begin{array}{l}{n+1≥-2}\\{2n-1≤5}\\{n+1≤2n-1}\end{array}\right.$,
解得:2≤n≤3.
故得实数n的取值范围是[2,3].

点评 本题考查了集合的化简与运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.平面上的两个向量$\overrightarrow{OA}$和$\overrightarrow{OB}$满足|$\overrightarrow{OA}$|=a,|$\overrightarrow{OB}$|=b,且a2+b2=4,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,若向量$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R).且(λ-$\frac{1}{2}$)2a2+(μ-$\frac{1}{2}$)2b2=1,则|$\overrightarrow{OC}$|的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点P(-1,2),倾斜角为135°的直线方程为(  )
A.x+y-1=0B.x-y+1=0C.x-y-1=0D.x+y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+t,x<0}\\{x+lnx,x>0}\end{array}\right.$,其中t是实数.设A,B为该函数图象上的两点,横坐标分别为x1,x2,且x1<x2
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若x2<0,函数f(x)的图象在点A,B处的切线互相垂直,求x1-x2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=-2i+$\frac{3-i}{i}$,则复数z的共轭复数$\overline z$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x,y均为正实数,则$\frac{x}{2x+y}$+$\frac{y}{x+2y}$的最大值为(  )
A.2B.$\frac{2}{3}$C.4D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要完成下述两项调查,应采用的抽样方法是(  )
①某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为调查社会购买力的某项指标,要从中抽取1个容量为100户的样本;
②某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况.
A.①用简单随机抽样法,②用系统抽样法
B.①用分层抽样法,②用简单随机抽样法
C.①用系统抽样法,②用分层抽样法
D.①用分层抽样法,②用系统抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,已知S是边长为1的正三角形所在平面外一点,且SA=SB=SC=1,M,N分别是AB,SC的中点,求异面直线SM与BN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{a{x^2}+bx+c}}{e^x}$(a>0)的导函数y=f′(x)的两个零点为0和3.
(1)求函数f(x)的单调递增区间;
(2)若函数f(x)的极大值为$\frac{10}{e^3}$,求函数f(x)在区间[0,5]上的最小值.

查看答案和解析>>

同步练习册答案