精英家教网 > 高中数学 > 题目详情
如图,四棱锥中,底面为直角梯形,, 平面,且的中点

(1) 证明:面
(2) 求面与面夹角的余弦值.
(1) 详见解析;(2) 面与面夹角的余弦值

试题分析:(1) 证明:面,在立体几何中,证明面面垂直,往往转化为证明线面垂直,即证一个平面过另一个平面的垂线,由已知,即,又因为,则,只需在平面内再找一条垂线即可,由已知平面,从而得,这样平面,即得面;也可利用向量法, 以为坐标原点长为单位长度,分别以轴建立空间直角坐标系,利用向量来证,即得,其它同上;
(2) 求面与面夹角的余弦值,可建立空间直角坐标系,利用向量法求二面角的大小,由(1) 建立的间直角坐标系,设出两个半平面的法向量,利用法向量的性质,求出两个半平面的法向量,利用法向量来求平面与平面的夹角的余弦值.
试题解析:(1) 以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为.

(1) 证明:因
由题设知,且是平面内的两条相交直线,由此得.
在面上,故面⊥面.     5分
(2) 解:在上取一点,则存在使

要使,只需,即,解得,可知当时,点的坐标为,能使,此时,有,由,所以为所求二面角的平面角.因为,故
与面夹角的余弦值.     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图四棱锥中,底面是平行四边形,平面的中点,.

(1)试判断直线与平面的位置关系,并予以证明;
(2)若四棱锥体积为  ,,求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥,,,,,上一点,是平面的交点.

(1)求证:
(2)求证:
(3)求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,平面分别是的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线, 是两个不同的平面,则下列命题正确的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设l是一条直线,α,β,γ是不同的平面,则在下列命题中,假命题是________.
①如果α⊥β,那么α内一定存在直线平行于β
②如果α不垂直于β,那么α内一定不存在直线垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
④如果α⊥β,l与α,β都相交,那么l与α,β所成的角互余

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体中,下列结论不正确的是   (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两个不重合的平面,在下列条件中,可判定的是(  )
A.都与平面垂直
B.内不共线的三点到的距离相等
C.内的两条直线且
D.是两条异面直线且

查看答案和解析>>

同步练习册答案