精英家教网 > 高中数学 > 题目详情
18.如图所示,一个圆柱形乒乓球筒,高为20厘米,底面半径为2厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度均忽略不计).一个平面与两个乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为$\frac{\sqrt{15}}{4}$.

分析 设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,(a>b>0),由题意求出a,b,c,由此能求出该椭圆的离心率.

解答 解:不妨设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,(a>b>0),
由题意得$\left\{\begin{array}{l}{2a=2a-4}\\{b=2}\end{array}\right.$,
解得a=8,b=2,c=$\sqrt{64-4}$=2$\sqrt{15}$,
∴该椭圆的离心率为e=$\frac{c}{a}$=$\frac{2\sqrt{15}}{8}$=$\frac{\sqrt{15}}{4}$.
故答案为$\frac{\sqrt{15}}{4}$.

点评 本题考查椭圆的离心率的求法,解题时要认真审题,注意椭圆性质的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,a、b、c分别是三个内角A、B、C的对边,若向量$\overrightarrow x$=$(a,\sqrt{3}b)$与向量$\overrightarrow y=(cosA,sinB)$共线
(1)求角A;
(2)若a=2,求b+c得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\sqrt{1-2cos(\frac{π}{2}+3)sin(\frac{π}{2}-3)}$=(  )
A.-sin3-cos3B.sin3-cos3C.sin3+cos3D.cos3-sin3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正项等比数列{an}的公比为q,且$\frac{S_3}{a_3}=3$,则公比q=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,某公园中间有一块等腰梯形的绿化区ABCD,AB,CD的长度相等,均为2百米,BC的长度为4百米,其中BMN是半径为1百米的扇形,$∠ABC=\frac{π}{3}$.管理部门欲在绿化区ABCD中修建从M到C的观赏小路$\widehat{MP}-PQ-QC$;其中P为$\widehat{MN}$上异于M,N的一点,小路PQ与BC平行,设∠PBC=θ.
(1)用θ表示PQ的长度,并写出θ的范围;
(2)当θ取何值时,才能使得修建的观赏小路$\widehat{MP}-PQ-QC$的总长度最短?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用简单随机抽样方法从有25名女生和35名男生的总体中,推选5名学生参加健美操活动,则某名女生被抽到的机率是(  )
A.$\frac{1}{5}$B.$\frac{1}{7}$C.$\frac{1}{12}$D.$\frac{1}{60}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax(a为常数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a>0,求不等式f(x)-f($\frac{2}{a}$-x)>0的解集;
(Ⅲ)若存在两个不相等的整数x1,x2满足f(x1)=f(x2),求证:x1+x2>$\frac{2}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知f(x+1)=4x2+2x+1求f(x)的解析式.
(2)若函数f(x)是二次函数且满足f(x+2)-2f(x)=x2-5x,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=|x+2|+|x-1|.
(1)求不等式f(x)>5的解集;
(2)若f(x)≥a2-2a恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案