精英家教网 > 高中数学 > 题目详情

,Q=;若将,lgQ,lgP适当排序后可构成公差为1的等差数列的前三项.

(1)试比较M、P、Q的大小;

(2)求的值及的通项;

(3)记函数的图象在轴上截得的线段长为

,求,并证明.

 

【答案】

(1)当时:;当时: ;当时:;

(2)当时:;当时:无解.

【解析】

试题分析:(1)两两之间作差比较大小;(2)根据第(1)问的结果结合等差数列项的关系求解;(3)先求出线段长,再表示出,通过裂项相消化简求值,再结合放缩法求范围

试题解析:(1)由          2分

                       3分

                        4分

时,

时,即,则                      5分

时,,则

时,,则

(2)当时,

解得,从而                 7分

时,

 , 无解.   8分

(3)设轴交点为 

=0时有

                           9分

     11分

          14分

考点:1.作差比较大小;2.分类讨论思想;3.等差数列通项;4.裂项相消求和;5.放缩法应用.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在平面内,ABCD是∠BAD=60°且AB=a的菱形,ADD''A1和CDD'C1都是正方形.将两个正方形分别沿AD,CD折起,使D''与D'重合于点D1.设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设BE=t(t>0)(图2).
(1)设二面角E-AC-D1的大小为q,若
π
4
≤θ≤
π
3
,求t的取值范围;
(2)在线段D1E上是否存在点P,使平面PA1C1∥平面EAC,若存在,求出P分
D1E
所成的比λ;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,点A为圆形纸片内不同于圆心C的定点,动点M在圆周上,将纸片折起,使点M与点A重合,设折痕m交线段CM于点N.现将圆形纸片放在平面直角坐标系xoy中,设圆C:(x+1)2+y2=4a2(a>1),A(1,0),记点N的轨迹为曲线E.
(1)证明曲线E是椭圆,并写出当a=2时该椭圆的标准方程;
(2)设直线l过点C和椭圆E的上顶点B,点A关于直线l的对称点为点Q,若椭圆E的离心率e∈[
1
2
3
2
]
,求点Q的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三第二次教学质量考试数学理卷 题型:解答题

(本题满分14分)

如图1,在平面内,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).

  

(Ⅰ) 设二面角E – AC – D1的大小为q,若£ q £ ,求线段BE长的取值范围;

(Ⅱ)在线段上存在点,使平面平面,求与BE之间满足的关系式,并证明:当0 < BE < a时,恒有< 1.

 

查看答案和解析>>

科目:高中数学 来源:2010-2010-2011学年四川省高三四月月考文科数学卷 题型:解答题

如图1,在平面内,ABCD是的菱形,都是正方形。将两个正方形分别沿AD,CD折起,使重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角E – AC – D1的大小为q ,若,求的取值范围;

(2)在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

如图1,在平面内,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).

 (Ⅰ) 设二面角E – AC – D1的大小为q,若£ q £ ,求线段BE长的取值范围;

(第20题–1)

(第20题–2)

(Ⅱ)在线段上存在点,使平面平面,求与BE之间满足的关系式,并证明:当0 < BE < a时,恒有< 1.

查看答案和解析>>

同步练习册答案