精英家教网 > 高中数学 > 题目详情
10.已知抛物线x2=2y的焦点与椭圆$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{2}$=1的一个焦点重合,则m=(  )
A.1B.2C.3D.$\frac{9}{4}$

分析 求出抛物线的焦点坐标,椭圆的焦点坐标重合,求解m即可.

解答 解:抛物线x2=2y的焦点(0,$\frac{1}{2}$)与椭圆$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{2}$=1的一个焦点(0,$\sqrt{m-2}$)重合,可得$\sqrt{m-2}=\frac{1}{2}$,
解得m=$\frac{9}{4}$.
故选:D.

点评 本题考查椭圆的简单性质以及抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若随机变量X服从正态分布N(μ,σ2)(σ>0),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974,已知某随机变量Y近似服从正态分布N(2,σ2),若P(Y>3)=0.1587,则P(Y<0)=(  )
A.0.0013B.0.0228C.0.1587D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-ax(a≠0),g(x)=lnx,f(x)图象与x轴异于原点的交点M处的切线为l1,g(x-1)与x轴的交点N处的切线为l2,并且l1与l2平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知t∈R,求函数y=f[g(x)+t],x∈[1,e]的最小值;
(Ⅲ)令F(x)=g(x)+g′(x),x∈(1,+∞),x2>x1>1,对于两个大于1的实数α,β满足:α=mx1+(1-m)x2,β=(1-m)x1+mx2,m∈(0,1).
求证:|F(α)-F(β)|<|F(x1)-F(x2)|成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题是真命题的是(  )
A.?φ∈R,函数f(x)=sin(2x+φ)都不是偶函数
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,0),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为2
D.“|x|≤1”是“x≤1”的既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,A,B,C对应边分别为a,b,c,且a=1,b=$\sqrt{2},A={30°}$,则B=45°或135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=cos(2x+$\frac{π}{3}$),若存在x1,x2,…xn满足0≤x1<x2<…<xn≤4π,且|f(x1)-f(x2)|+|f(2)-f(x3)|+…+|f(xn-1)-f(xn)|=16(n≥2,n∈N*),则n的最小值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,A、B、C的对边分别为a、b、c,若B=$\frac{π}{3}$,b=6,sinA-2sinC=0,则a=(  )
A.3B.2$\sqrt{3}$C.4$\sqrt{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}为递增数列,若a1>0,且2(an+2-an)=3an+1,则数列{an}的公比q=(  )
A.2或$\frac{1}{2}$B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+(y-1)2=5,直线l:mx-y+2-m=0.
(Ⅰ)求证:对m∈R,直线l与圆C总有两个不同的交点A,B;
(Ⅱ)若∠ACB=120°,求m的值;
(Ⅲ)当|AB|取最小值时,求直线l的方程.

查看答案和解析>>

同步练习册答案