精英家教网 > 高中数学 > 题目详情

【题目】十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:

男公务员

女公务员

生二胎

40

20

不生二胎

20

20


(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

【答案】
(1)解:由于K2= = = <3.841,

故没有95%以上的把握认为“生二胎与性别有关”.


(2)解:题意可得,男公务员生二胎的概率为 = ,X~B(3, ),

X的分布列为

X

0

1

2

3

P

E(X)=3 =2.


【解析】(1)计算K2<3.841,可得结论.(2)男公务员生二胎的概率为 = ,X~B(3, ),由此求得X的分布列与数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:

t

男同学人数

7

11

15

12

2

1

女同学人数

8

9

17

13

3

2

若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.

(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?

(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.

(i)求抽取的4位同学中既有男同学又有女同学的概率;

(ii)记抽取的“读书迷”中男生人数为,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国科研人员屠呦呦法相从青篙中提取物青篙素抗疟性超强,几乎达到100%,据监测:服药后每毫升血液中的含药量y(微克)与时间r(小时)之间近似满足如图所示的曲线

(1)写出第一服药后y与t之间的函数关系式y=f(x);
(2)据进一步测定:每毫升血液中含药量不少于 微克时,治疗有效,求服药一次后治疗有效的时间是多长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二八班选出甲、乙、丙三名同学参加级部组织的科学知识竞赛.在该次竞赛中只设成绩优秀和成绩良好两个等次,若某同学成绩优秀,则给予班级10分的班级积分,若成绩良好,则给予班级5分的班级积分.假设甲、乙、丙成绩为优秀的概率分别为 ,他们的竞赛成绩相互独立.
(1)求在该次竞赛中甲、乙、丙三名同学中至少有一名成绩为优秀的概率;
(2)记在该次竞赛中甲、乙、丙三名同学所得的班级积分之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的函数f(x)= 是奇函数,其中a,b为实数
(1)求a,b的值
(2)用定义证明f(x)在R上是减函数
(3)若对于任意的t∈[﹣3,3],不等式f(t2﹣2t)+f(﹣2t2+k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上, 垂直与圆所在平面, 的垂心.

(1)求证:平面平面

(2)若,点在线段上,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为2.

(Ⅰ)求函数上的单调递减区间;

(Ⅱ)中,角所对的边分别是,且,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.

(1)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求的值;

(3)在满足(2)的条件下,估计1月份该市居民用户平均用电费用(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, ,平面底面 的中点, 是棱上的点,

(Ⅰ)求证:平面平面

(Ⅱ)若二面角大小为,设,试确定的值.

查看答案和解析>>

同步练习册答案