精英家教网 > 高中数学 > 题目详情

设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.

(1) a1=1   (2) an=3·2n-1-2

解析解:(1)由题意a1=S1=T1,Tn=2Sn-n2,
令n=1得a1=2a1-1,∴a1=1.
(2)由Tn=2Sn-n2
得Tn-1=2Sn-1-(n-1)2(n≥2)②
①-②得Sn=2an-2n+1(n≥2),
验证n=1时也成立.
∴Sn=2an-2n+1③
则Sn-1=2an-1-2(n-1)+1(n≥2)④
③-④得an=2an-2an-1-2,
即an+2=2(an-1+2),
故数列{an+2}是公比为2的等比数列,首项为3,
所以an+2=3·2n-1,从而an=3·2n-1-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通项公式.
(2)若cn=anbn,{cn}的前n项和为Tn,求Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的首项不为零,前n项和为Sn,且对任意的rtN*,都有
(1)求数列{an}的通项公式(用a1表示);
(2)设a1=1,b1=3,,求证:数列为等比数列;
(3)在(2)的条件下,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列,其前项和满足的等比中项.
(1)求数列的通项公式;
(2) 符号表示不超过实数的最大整数,记,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,3Sn=an-1(n∈N?).
(1)求a1,a2
(2)求证:数列{an}是等比数列;
(3)求an和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列{an},其前n项和Sn满足6Sn+3an+2,且a1a2a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tna1bna2bn-1+…+anb1n∈N*,证明:3Tn+1=2bn+1an+1(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}前n项和为Sn,点均在直线上.
(1)求数列{an}的通项公式;
(2)设,Tn是数列{bn}的前n项和,试求Tn;
(3)设cn=anbn,Rn是数列{cn}的前n项和,试求Rn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列满足,且,其中.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足是否存在正整数m、n(1<m<n),使得成等比数列?若存在,求出所有的m、n的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列{an}的前n项和为Sn,已知a1+an=66,a2an-1=128,Sn=126,求n和公比q的值.

查看答案和解析>>

同步练习册答案