精英家教网 > 高中数学 > 题目详情

已知正项数列{an},其前n项和Sn满足6Sn+3an+2,且a1a2a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tna1bna2bn-1+…+anb1n∈N*,证明:3Tn+1=2bn+1an+1(n∈N*).

(1)an=3n-2,bn=4n-1(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(2013•湖北)已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=﹣18.
(1)求数列{an}的通项公式;
(2)是否存在正整数n,使得Sn≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均满足
(1)求数列的通项公式;
(2)设数列的通项公式是,前项和为,求证:对于任意的正数,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和Snn2(n∈N*),等比数列{bn}满足b1a1,2b3b4.
(1)求数列{an}和{bn}的通项公式;
(2)若cnan·bn(n∈N*),求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an,cn,记数列{cn}的前n项和Tn.若对?n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}满足:a1=1,an+1=3an+2n+1(n∈N*),求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Snn2n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在点处的切线与轴的交点为,其中为正实数.
(1)用表示
(2),若,试证明数列为等比数列,并求数列的通项公式;
(3)若数列的前项和,记数列的前项和,求

查看答案和解析>>

同步练习册答案