精英家教网 > 高中数学 > 题目详情
20.若复数1-$\sqrt{3}i$(i为虚数单位),是z的共轭复数,则在复平面内,复数z对应的点的坐标为(  )
A.(0,1)B.(1,-$\sqrt{3}$)C.(-1,-$\sqrt{3}$)D.(-1,0)

分析 直接求出复数的共轭复数,然后推出对应点的坐标即可.

解答 解:复数1-$\sqrt{3}i$(i为虚数单位),是z的共轭复数,
可得z=-1-$\sqrt{3}$i.
在复平面内,复数z对应的点的坐标为:(-1,-$\sqrt{3}$).
故选:C.

点评 本题考查复数的几何意义,复数的概念,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.点(2,1)到直线3x-4y+7=0的距离为$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,那么复数$\frac{z}{1+i}$对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x-$\frac{a}{x}$+blnx,曲线y=f(x)在点(1,f(1))处切线方程为3x+y-8=0.
(Ⅰ)求a,b的值,并求函数f(x)的单调递增区间;
(Ⅱ)设g(x)=f(x)-$\frac{3}{x}$,试问过点(2,2)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x(lnx-ax)(a∈R),g(x)=f′(x).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线3x-y-1=0平行,求实数a的值;
(Ⅱ)若a>0,求函数g(x)在[1,e]上的最大值;
(Ⅲ)若函数F(x)=g(x)+$\frac{1}{2}{x^2}$两个极值点x1,x2,且x1<x2,求证:f(x2)<-1<f(x1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}\frac{2}{x},x≥2\\{(x-1)^3},0<x<2\end{array}\right.$,若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是(  )
A.$({0,\frac{1}{2}})$B.$({0,\frac{{\sqrt{2}}}{4}})∪({\frac{{\sqrt{2}}}{4},\frac{1}{2}})$C.$({\frac{{\sqrt{2}}}{4},+∞})$D.$[{\frac{1}{2},2\sqrt{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{n+1}{{{(n+2)}^{2}a}_{n}^{2}}$,数列{bn}的前n项和为Tn,证明:对任意n∈N,都有Tn<$\frac{5}{16}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$、$\overrightarrow{a}$、$\overrightarrow{b}$如图所示,以$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$为基底,则$\overrightarrow{a}$-$\overrightarrow{b}$可表示为$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,且cos$\frac{A+C}{2}$=$\frac{\sqrt{3}}{3}$.
(1)求cosB的值;
(2)若b=2$\sqrt{2}$,求ac的最大值.

查看答案和解析>>

同步练习册答案