精英家教网 > 高中数学 > 题目详情
11.若直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则直线l的斜率为(  )
A.1B.-1C.-2或1D.-1或-2

分析 当a=0时,直线l为y=2,显然不符合题目要求,所以当a≠0时,令y=0和x=0分别求出直线在两坐标轴上的截距,根据截距相等列出关于a的方程,解方程即可求出a值.

解答 解:根据题意a≠0,由直线l:ax+y-2-a=0,
令y=0,得到直线在x轴上的截距是 $\frac{2+a}{a}$,令x=0得到直线在y轴上的截距是2+a,
根据题意得:$\frac{2+a}{a}$=2+a,即a2+a-2=0,
分解因式得:(a+2)(a-1)=0
解得:a=-2或a=1.
故选:C.

点评 此题考查学生理解直线截距式方程应用的条件是截距存在,并会根据直线的方程求出与坐标轴的截距,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,已知⊙O的直径AB垂直于弦CD于E,连结 AD、BD、OC、OD,且 OD=5.
(1)求证:∠CDB=∠ADO;
(2)若sin∠BAD=$\frac{3}{5}$,求 CD 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=|2x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系式正确的是(  )
A.a+c≤0B.a+c>0C.a+c≤0D.a+c<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an},{bn}满足a1=1,b1=3,an+1=an+2,lgbn+1=lg3+lgbn,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)设数列{cn}满足cn=an•bn,n∈N*,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=lg(x2-3x)的定义域为集合A,函数$g(x)=\sqrt{-{x^2}+4ax-3{a^2}}$的定义域为集合B(其中a∈R,且a>0).
(1)当a=1时,求集合B;
(2)若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,若该几何体的体积为3$\sqrt{7}$,则侧视图中线段的长度x的值是(  )
A.5B.4C.2$\sqrt{7}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆的方程为(x+2)2+y2=4.
(1)判断直线x+4=0与圆的位置关系;
(2)一直线y=kx+3与圆有交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=x2-5x+6(-3≤x≤2)的值域是[0,30].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是点F1,F2,上、下顶点分别为A,B,其离心率e=$\frac{1}{2}$,点P为椭圆上的一个动点,当点P与点A重合时,△PF1F2的内切圆面积为$\frac{4π}{3}$.
(I)求a,b的值;
(Ⅱ)当点P是椭圆上异于顶点的任意一点,直线AP,BP分别交x轴于两点M,N,证明:|$\overrightarrow{OM}$|•|$\overrightarrow{ON}$|为定值.

查看答案和解析>>

同步练习册答案