【题目】已知圆
的方程为:
。
(1)求圆
的圆心所在直线方程一般式;
(2)若直线
被圆
截得弦长为
,试求实数
的值;
(3)已知定点
,且点
是圆
上两动点,当
可取得最大值为
时,求满足条件的实数
的值。
【答案】(1)
;(2)
或
;(3)
.
【解析】试题分析:
(1)配方得圆的标准方程,可得圆心坐标满足
,消去
可得圆心所在直线方程;
(2)由弦长、半径结合勾股定理求出圆心到直线的距离,再由点到直线距离公式求得圆心到直线的距离,两者相等可解得m;
(3)本题关键是∠APB何时最大?由于P点固定,因此当PA,PB是圆的两切线时∠APB最大,由此角是90°,这样PACB是正方形,可得CP=
,由两点间距离公式可求得m.
试题解析:
(1)由已知圆C的方程为:
所以圆心为![]()
所以圆心在直线方程为
(2)由已知r=2,又弦长为
,
所以圆心到直线距离为
所以
解得m=-1或m=
3
(3)当PA、PB为圆的两条切线时,∠APB取最大值.
此时∠APB=90°,又CA⊥PA,CB⊥PB,CA=CB
所以四边形PACB为正方形,则∣CP∣=
即P到圆心C的距离=
解得![]()
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)用“五点法”在如图所示的虚线方框内作出函数
在一个周期内的简图(要求:列表与描点,建立直角坐标系);
![]()
(2)函数
的图像可以通过函数
的图像经过“先伸缩后平移”的规则变换而得到,请写出一个这样的变换!
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos(
+x)cos(
-x),g(x)=
sin 2x-
.
(1)求函数f(x)的最小正周期;
(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
CD=2,M是线段AE上的动点. ![]()
(Ⅰ)试确定点M的位置,使AC∥平面MDF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面MDF将几何体ADE﹣BCF分成的两部分的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知线段
的端点
,端点
在圆
上运动
(Ⅰ)求线段
的中点
的轨迹方程.
(Ⅱ) 设动直线
与圆
交于
两点,问在
轴正半轴上是否存在定点
,使得直线
与直线
关于
轴对称?若存在,请求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(1)完成下列2×2列联表:
喜欢旅游 | 不喜欢旅游 | 合计 | |
女性 | |||
男性 | |||
合计 |
(2)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关” 附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=
,其中n=a+b+c+d)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(Ⅰ)当
时,解不等式
;
(Ⅱ)若关于
的方程
的解集中恰有一个元素,求
的取值范围;
(Ⅲ)设
,若对任意
,函数
在区间
上的最大值与最小值的和不大于
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com