精英家教网 > 高中数学 > 题目详情
12.下列点在曲线$\left\{\begin{array}{l}x={sin^2}θ\\ y=cosθ\end{array}\right.$上的是(  )
A.(2,1)B.(-3,-2)C.$({\frac{3}{4},-\frac{1}{2}})$D.(1,1)

分析 根据三角函数的平方关系将参数方程化为普通方程,再把各个选项中点的坐标代入验证即可.

解答 解:由题意得,$\left\{\begin{array}{l}{x=si{n}^{2}θ}\\{y=cosθ}\end{array}\right.$,消去参数θ得y2+x=1,
A、把点(2,1)代入y2+x=1不成立,A不正确;
B、把点(-3,-2)代入y2+x=1不成立,B不正确;
C、把点($\frac{3}{4}$,$-\frac{1}{2}$)代入y2+x=1成立,C正确;
D、把点(1,1)代入y2+x=1不成立,D不正确;
故选:C.

点评 本题考查参数方程化为普通方程,三角函数的平方关系的应用,以及点与曲线的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,平面α∥平面β,点A,C∈α,B,D∈β,点E,F分别在线段AB,CD上,且$\frac{AE}{EB}$=$\frac{CF}{FD}$,求证:EF∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高三(1)班全体女生的人数;
(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100)之间的试卷中任取两份分析女学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图为y=Acos(ωx+ϕ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象的一段,其解析式y=cos(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的方程为t(x-1)+2x+y+1=0  (t∈R)
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若直线l不经过第二象限,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知极坐标平面内的点P(2,-$\frac{5π}{3}$),则P关于极点的对称点的极坐标与直角坐标分别为(  )
A.(2,$\frac{π}{3}$),(1,$\sqrt{3}$)B.(2,-$\frac{π}{3}$),(1,-$\sqrt{3}$)C.(2,$\frac{2π}{3}$),(-1,$\sqrt{3}$)D.(2,-$\frac{2π}{3}$),(-1,-$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow{b}$=(cosx,cosx),f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$+2m-1(x,m∈R).
(Ⅰ)求f(x)的对称轴方程;
(Ⅱ)若x∈[0,$\frac{π}{2}$]时,f(x)的最小值为5,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=$\frac{{{2^x}-a}}{{{2^x}+1}}$是奇函数,则f(x)≥$\frac{a}{2}$的解集为[log23,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.要得到$y=sin(2x-\frac{π}{4})$的图象,且使平移的距离最短,则需将y=sin2x的图象向右平移$\frac{π}{8}$个单位即可得到.

查看答案和解析>>

同步练习册答案